219 research outputs found

    Characterizing slope instability kinematics by integrating multi-sensor satellite remote sensing observations

    Get PDF
    Over the past few decades, the occurrence and intensity of geological hazards, such as landslides, have substantially risen due to various factors, including global climate change, seismic events, rapid urbanization and other anthropogenic activities. Landslide disasters pose a significant risk in both urban and rural areas, resulting in fatalities, infrastructure damages, and economic losses. Nevertheless, conventional ground-based monitoring techniques are often costly, time-consuming, and require considerable resources. Moreover, some landslide incidents occur in remote or hazardous locations, making ground-based observation and field investigation challenging or even impossible. Fortunately, the advancements in spaceborne remote sensing technology have led to the availability of large-scale and high-quality imagery, which can be utilized for various landslide-related applications, including identification, monitoring, analysis, and prediction. This efficient and cost-effective technology allows for remote monitoring and assessment of landslide risks and can significantly contribute to disaster management and mitigation efforts. Consequently, spaceborne remote sensing techniques have become vital for geohazard management in many countries, benefiting society by providing reliable downstream services. However, substantial effort is required to ensure that such benefits are provided. For establishing long-term data archives and reliable analyses, it is essential to maintain consistent and continued use of multi-sensor spaceborne remote sensing techniques. This will enable a more thorough understanding of the physical mechanisms responsible for slope instabilities, leading to better decision-making and development of effective mitigation strategies. Ultimately, this can reduce the impact of landslide hazards on the general public. The present dissertation contributes to this effort from the following perspectives: 1. To obtain a comprehensive understanding of spaceborne remote sensing techniques for landslide monitoring, we integrated multi-sensor methods to monitor the entire life cycle of landslide dynamics. We aimed to comprehend the landslide evolution under complex cascading events by utilizing various spaceborne remote sensing techniques, e.g., the precursory deformation before catastrophic failure, co-failure procedures, and post-failure evolution of slope instability. 2. To address the discrepancies between spaceborne optical and radar imagery, we present a methodology that models four-dimensional (4D) post-failure landslide kinematics using a decaying mathematical model. This approach enables us to represent the stress relaxation for the landslide body dynamics after failure. By employing this methodology, we can overcome the weaknesses of the individual sensor in spaceborne optical and radar imaging. 3. We assessed the effectiveness of a newly designed small dihedral corner reflector for landslide monitoring. The reflector is compatible with both ascending and descending satellite orbits, while it is also suitable for applications with both high-resolution and medium-resolution satellite imagery. Furthermore, although its echoes are not as strong as those of conventional reflectors, the cost of the newly designed reflectors is reduced, with more manageable installation and maintenance. To overcome this limitation, we propose a specific selection strategy based on a probability model to identify the reflectors in satellite images

    Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors

    Get PDF
    Abstract Radar Corner Reflectors (CR) are increasingly used as reference targets for land surface deformation measurements with the Interferometric Synthetic Aperture Radar (InSAR) technique. When co-located with ground-based Global Navigation Satellite Systems (GNSS) infrastructure, InSAR observations at CR can be used to integrate relative measurements of surface deformation into absolute reference frames defined by GNSS. However, CR are also a potential source of GNSS multipath effects and may therefore have a detrimental effect on the GNSS observations. In this study, we compare daily GNSS coordinate time series and 30-second signal-to-noise ratio (SNR) observations for periods before and after CR deployment at a GNSS site. We find that neither the site coordinates nor the SNR values are significantly affected by the CR deployment, with average changes being within 0.1 mm for site coordinates and within 1 % for SNR values. Furthermore, we generate empirical site models by spatially stacking GNSS observation residuals to visualise and compare the spatial pattern in the surroundings of GNSS sites. The resulting stacking maps indicate oscillating patterns at elevation angles above 60 degrees which can be attributed to the CR deployed at the analysed sites. The effect depends on the GNSS antenna used at a site with the magnitude of multipath patterns being around three times smaller for a high-quality choke ring antenna compared to a ground plane antenna without choke rings. In general, the CR-induced multipath is small compared to multipath effects at other GNSS sites located in a different environment (e. g. mounted on a building)

    Combined InSAR and Terrestrial Structural Monitoring of Bridges

    Get PDF
    This paper examines advances in InSAR satellite measurement technologies to understand their relevance, utilisation and limitations for bridge monitoring. Waterloo Bridge is presented as a case study to explore how InSAR data sets can be combined with traditional measurement techniques including sensors installed on the bridge and automated total stations. A novel approach to InSAR bridge monitoring was adopted by the installation of physical reflectors at key points of structural interest on the bridge, in order to supplement the bridge’s own reflection characteristics and ensure that the InSAR measurements could be directly compared and combined with insitu measurements. The interpretation and integration of InSAR data sets with civil infrastructure data is more than a trivial task, and a discussion of uncertainty of measurement data is presented. Finally, a strategy for combining and interpreting varied data from multiple sources to provide useful insights into each of these methods is presented, outlining the practical applications of this data analysis to support wider monitoring strategies.Author funding under EPSRC (UK) Award 1636878, co-author funding under Research Council of Norway (RCN Grant no. 237906)

    Mapping ground instability in areas of geotechnical infrastructure using satellite InSAR and Small UAV Surveying: a case study in Northern Ireland

    Get PDF
    Satellite Interferometric Synthetic Aperture Radar (InSAR), geological data and Small Unmanned Aerial Vehicle (SUAV) surveying was used to enhance our understanding of ground movement at five areas of interest in Northern Ireland. In total 68 ERS-1/2 images 1992–2000 were processed with the Small Baseline Subset (SBAS) InSAR technique to derive the baseline ground instability scenario of key areas of interest for five stakeholders: TransportNI, Northern Ireland Railways, Department for the Economy, Arup, and Belfast City Council. These stakeholders require monitoring of ground deformation across either their geotechnical infrastructure (i.e., embankments, cuttings, engineered fills and earth retaining structures) or assessment of subsidence risk as a result of abandoned mine workings, using the most efficient, cost-effective methods, with a view to minimising and managing risk to their businesses. The InSAR results provided an overview of the extent and magnitude of ground deformation for a 3000 km2 region, including the key sites of the disused salt mines in Carrickfergus, the Belfast–Bangor railway line, Throne Bend and Ligoniel Park in Belfast, Straidkilly and Garron Point along the Antrim Coast Road, plus other urbanised areas in and around Belfast. Tailored SUAV campaigns with a X8 airframe and generation of very high resolution ortho-photographs and a 3D surface model via the Structure from Motion (SfM) approach at Maiden Mount salt mine collapse in Carrickfergus in 2016 and 2017 also demonstrate the benefits of very high resolution surveying technologies to detect localised deformation and indicators of ground instabilit

    Spatio-temporal linking of multiple SAR satellite data from medium and high resolution Radarsat-2 images

    Get PDF
    A recent development in Interferometric Synthetic Aperture Radar (InSAR) technology is integrating multiple SAR satellite data to dynamically extract ground features. This paper addresses two relevant challenges: identification of common ground targets from different SAR datasets in space, and concatenation of time series when dealing with temporal dynamics. To address the first challenge, we describe the geolocation uncertainty of InSAR measurements as a three-dimensional error ellipsoid. The points, among InSAR measurements, which have error ellipsoids with a positive cross volume are identified as tie-point pairs representing common ground objects from multiple SAR datasets. The cross volumes are calculated using Monte Carlo methods and serve as weights to achieve the equivalent deformation time series. To address the second challenge, the deformation time series model for each tie-point pair is estimated using probabilistic methods, where potential deformation models are efficiently tested and evaluated. As an application, we integrated two Radarsat-2 datasets in Standard and Extra-Fine modes to map the subsidence of the west of the Netherlands between 2010 and 2017. We identified 18128 tie-point pairs, 5 intersection types of error ellipsoids, 5 deformation models, and constructed their long-term deformation time series. The detected maximum mean subsidence velocity in Line-Of-Sight direction is up to 15 mmyr-1. We conclude that our method removes limitations that exist in single-viewing-geometry SAR when integrating multiple SAR data. In particular, the proposed time-series modeling method is useful to achieve a long-term deformation time series of multiple datasets

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Synthetic Aperture Radar für Monitoring in städtischen Gebieten und im Bergbau

    Get PDF
    Considering it is hazardous to the environment and people, monitoring land movements at urban area become more and more significant. On the other hand, studying of land movements in non-urban area is also important. Synthetic aperture radar using interferometric technique, which is known as InSAR, is capable of providing a quite denser measurement over large areas. More specifically, Interferometric SAR (InSAR), Differential InSAR (DInSAR), Persistent Scatterers InSAR (PSI) techniques are developing to meet people¡¯s requirements of detecting land movements. Due to the different features of urban and non-urban area, the application of InSAR for land movements monitoring may come cross different challenges. D¨¹sseldorf was used as the urban test site by processing 20 TerraSAR-X images using PSI. Levelling results provided by the State Capital of D¨¹sseldorf validated the PSInSAR result, when two time series showed similar progress with very few discrepancies. Xishan mining region was chosen as the non-urban test site in this project, because of clear advantages. Such as well served mining schedule and literature and rapid movements with big phase gradients. In the experiments carried out in Xishan mine, InSAR fulfilled the aim of mining parameters derivation. GPS surveying was collated for the coordinates of corner reflectors, which can validate and improve the accuracy of geocoding (better than 5 m).Die Überwachung von Setzungen in städtischen Gebieten wird immer wichtiger, da es sich um eine potenzielle Bedrohung für die Umwelt und den Menschen handelt. Die Untersuchung von Landsenkungen in nicht-städtischen Bereichen sind ebenfalls sehr wichtig. Mit interferometrischen Auswertungen von Synthetic Aperture Radar Messungen (InSAR) ist man in der Lage große Bereiche hochauflösend zu beobachten. SAR Systeme können während des Tages, der Nacht und unter allen Wetterbedingungen arbeiten. Heutzutage gibt es zunehmendes Interesse an der Anwendung von SAR für das Monitoring von Veränderungen der Erdoberfläche. Hierzu wurden speziell die Techniken des Interferometrischen SAR (InSAR), Differential InSAR (DInSAR) und Persistent Scatterers InSAR (PSI) entwickelt. Aufgrund der unterschiedlichen Merkmale von urbanen und nichturbanen Gebieten, kann die Anwendung von InSAR für das Monitoring von Bewegungen unterschiedliche Herausforderungen stellen. Die Stadt Düsseldorf wurde als Testfeld für die Verarbeitung von 20 TerraSAR-X Bilder mit PSI ausgewählt. Die Ergebnisse aus dem Nivellement der Landeshauptstadt Düsseldorf wurden für die Validierung der PSInSAR Ergebnisse genutzt. Zwei Zeitreihen zeigen einen ähnlichen Verlauf mit sehr geringen Abweichungen. Die Bergbauregion Xishan wurde als nichturbanes Testgebiete in diesem Projekt ausgewählt, weil es die Möglichkeit bietet an Informationen über den Bergbau, die Zeitpläne und Literatur zu kommen und es dort schnelle Oberflächenbewegungen mit großen Phasengradienten gibt. Die durchgeführten Experimente im Xishan Gebiet zeigen, dass man mit der InSAR Auswertung auch Bergbauparameter ableiten kann. Für die Koordinatenbestimmung der Corner Reflektoren wurden GPS Messungen durchgeführt, die auch zur Verbesserung der Satellitenbasislinien dienen und die Genauigkeit der Geokodierung (kleiner 5 m) verbessern
    • …
    corecore