3 research outputs found

    A lightweight and secure multilayer authentication scheme for wireless body area networks in healthcare system

    Get PDF
    Wireless body area networks (WBANs) have lately been combined with different healthcare equipment to monitor patients' health status and communicate information with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, it is important that healthcare systems have a secure way for users to log in and access resources and services. The lack of security and presence of anonymous communication in WBANs can cause their operational failure. There are other systems in this area, but they are vulnerable to offline identity guessing attacks, impersonation attacks in sensor nodes, and spoofing attacks in hub node. Therefore, this study provides a secure approach that overcomes these issues while maintaining comparable efficiency in wireless sensor nodes and mobile phones. To conduct the proof of security, the proposed scheme uses the Scyther tool for formal analysis and the Canetti–Krawczyk (CK) model for informal analysis. Furthermore, the suggested technique outperforms the existing symmetric and asymmetric encryption-based schemes

    On the Design of Provably Secure Lightweight Remote User Authentication Scheme for Mobile Cloud Computing Services

    No full text

    On the design of provably secure lightweight remote user authentication scheme for mobile cloud computing services

    Full text link
    Secure and efficient lightweight user authentication protocol for mobile cloud computing becomes a paramount concern due to the data sharing using Internet among the end users and mobile devices. Mutual authentication of a mobile user and cloud service provider is necessary for accessing of any cloud services. However, resource constraint nature of mobile devices makes this task more challenging. In this paper, we propose a new secure and lightweight mobile user authentication scheme for mobile cloud computing, based on cryptographic hash, bitwise XOR, and fuzzy extractor functions. Through informal security analysis and rigorous formal security analysis using random oracle model, it has been demonstrated that the proposed scheme is secure against possible well-known passive and active attacks and also provides user anonymity. Moreover, we provide formal security verification through ProVerif 1.93 simulation for the proposed scheme. Also, we have done authentication proof of our proposed scheme using the Burrows-Abadi-Needham logic. Since the proposed scheme does not exploit any resource constrained cryptosystem, it has the lowest computation cost in compare to existing related schemes. Furthermore, the proposed scheme does not involve registration center in the authentication process, for which it is having lowest communication cost compared with existing related schemes
    corecore