4,748 research outputs found

    The Poisson transform for unnormalised statistical models

    Full text link
    Contrary to standard statistical models, unnormalised statistical models only specify the likelihood function up to a constant. While such models are natural and popular, the lack of normalisation makes inference much more difficult. Here we show that inferring the parameters of a unnormalised model on a space Ω\Omega can be mapped onto an equivalent problem of estimating the intensity of a Poisson point process on Ω\Omega. The unnormalised statistical model now specifies an intensity function that does not need to be normalised. Effectively, the normalisation constant may now be inferred as just another parameter, at no loss of information. The result can be extended to cover non-IID models, which includes for example unnormalised models for sequences of graphs (dynamical graphs), or for sequences of binary vectors. As a consequence, we prove that unnormalised parameteric inference in non-IID models can be turned into a semi-parametric estimation problem. Moreover, we show that the noise-contrastive divergence of Gutmann & Hyv\"arinen (2012) can be understood as an approximation of the Poisson transform, and extended to non-IID settings. We use our results to fit spatial Markov chain models of eye movements, where the Poisson transform allows us to turn a highly non-standard model into vanilla semi-parametric logistic regression

    Contrastive Hebbian Learning with Random Feedback Weights

    Full text link
    Neural networks are commonly trained to make predictions through learning algorithms. Contrastive Hebbian learning, which is a powerful rule inspired by gradient backpropagation, is based on Hebb's rule and the contrastive divergence algorithm. It operates in two phases, the forward (or free) phase, where the data are fed to the network, and a backward (or clamped) phase, where the target signals are clamped to the output layer of the network and the feedback signals are transformed through the transpose synaptic weight matrices. This implies symmetries at the synaptic level, for which there is no evidence in the brain. In this work, we propose a new variant of the algorithm, called random contrastive Hebbian learning, which does not rely on any synaptic weights symmetries. Instead, it uses random matrices to transform the feedback signals during the clamped phase, and the neural dynamics are described by first order non-linear differential equations. The algorithm is experimentally verified by solving a Boolean logic task, classification tasks (handwritten digits and letters), and an autoencoding task. This article also shows how the parameters affect learning, especially the random matrices. We use the pseudospectra analysis to investigate further how random matrices impact the learning process. Finally, we discuss the biological plausibility of the proposed algorithm, and how it can give rise to better computational models for learning

    Weighted Contrastive Divergence

    Get PDF
    Learning algorithms for energy based Boltzmann architectures that rely on gradient descent are in general computationally prohibitive, typically due to the exponential number of terms involved in computing the partition function. In this way one has to resort to approximation schemes for the evaluation of the gradient. This is the case of Restricted Boltzmann Machines (RBM) and its learning algorithm Contrastive Divergence (CD). It is well-known that CD has a number of shortcomings, and its approximation to the gradient has several drawbacks. Overcoming these defects has been the basis of much research and new algorithms have been devised, such as persistent CD. In this manuscript we propose a new algorithm that we call Weighted CD (WCD), built from small modifications of the negative phase in standard CD. However small these modifications may be, experimental work reported in this paper suggest that WCD provides a significant improvement over standard CD and persistent CD at a small additional computational cost
    • …
    corecore