50 research outputs found

    Admittance Control of Four-link Bionic Knee Exoskeleton with Inertia Compensation

    Get PDF
    This paper proposes a control algorithm based on the admittance principle for the motion of the four-link bionic knee exoskeleton. Firstly, the interaction between the operator and the exoskeleton was converted into the desired trajectory of the exoskeleton. Then, the inertia compensation is achieved in light of the admittance features of exoskeleton movement. Finally, the validity of the admittance control method for four-link bionic knee was confirmed through simulation experiment. The simulation results show that the relative error of the joint angle between the operator and the exoskeleton was less than 5% at normal swinging frequency, and the interaction force between the manipulator and the exoskeleton was within ±0.5 N. The research findings lay a theoretical basis for practical application of exoskeletons

    Socially Assistive Robot Enabled Personalised Care for People with Dementia in Australian Private Homes

    Get PDF
    Australia’s population is ageing and a large number of people are living in their own homes. Motivated by design science as the research methodology, the authors in this paper embark the research on designing, implementing, trialling and evaluating robot enabled user-centred care for people with dementia in home-based settings. Given the importance of pursuing person-centred care practice, this research involves marrying personhood in health care with socially assistive robotics to the designs of social robot enabled person-centred care services. We have conducted first ever longitudinal robotic trials through real deployments in Australian private dwellings to evaluate the impact of the designed socially assistive robots on older people with dementia. The data analyses have been performed through both interactional data (with 2044 times of interaction and a total of 167 hours of usage) and quality of robot experience survey. The descriptive analysis of interactional data show that the designed socially assistive robot enabled care system has facilitated breaking the technology barrier of people with dementia, positively proving sensory enrichment to participants and provided respires to the participants’ carers. The quality of robot experience survey statistics indicate the participants had positive experience with their robot

    Active exoskeleton control systems: State of the art

    Get PDF
    To get a compliant active exoskeleton controller, the force interaction controllers are mostly used in form of either the impedance or admittance controllers. The impedance or admittance controllers can only work if they are followed by either the force or the position controller respectively. These combinations place the impedance or admittance controller as high-level controller while the force or position controller as low-level controller. From the application point of view, the exoskeleton controllers are equipped by task controllers that can be formed in several ways depend on the aims. This paper presents the review of the control systems in the existing active exoskeleton in the last decade. The exoskeleton control system can be categorized according to the model system, the physical parameters, the hierarchy and the usage. These considerations give different control schemes. The main consideration of exoskeleton control design is how to achieve the best control performances. However, stability and safety are other important issues that have to be considered. © 2012 The Authors

    Design and implementation of haptic sensing interface for ankle rehabilitation robotic platform

    Get PDF
    To solve the problem of rapidly increasing of patients with movement disorders and the aging population, Many researchers pay attention to the design of human-computer interaction interface for rehabilitation training, which can provide patients with a humanized interactive environment for human-computer interaction. There are large individual differences in interactive interface based on biological signals, so the interaction interface based on haptic sensor for rehabilitation robot is studied in this paper. An interaction interface for an ankle rehabilitation robot based on haptic sensor is designed and implemented, which mainly including rehabilitation robot interaction interface hardware system, interactive information measurement and software control system. Experiments based on interaction interface verified the availability of the hardware circuit of each sensor module and the effectiveness of the interactive information measurement and software control system of the rehabilitation robot. It provides a solution for the rehabilitation training and interactive robot control based on haptic sensor

    Adaptive walking assistance based on human-orthosis interaction

    Get PDF
    An assistive rehabilitation strategy for a lower-limb wearable robot is proposed and evaluated. The control strategy monitors the human-orthosis interaction torques and modifies the orthosis operation mode depending on its evolution with respect to a normal gait pattern. The control algorithm relies on the adaptation of the joints stiffness in function of these interaction torques and to the deviation from the desired trajectory. A walking pattern, an average of recorded gaits, is used as reference input. The human-orthosis interaction torques are used to define the time instant when robot assistance is needed and its degree. The objective of this work is to demonstrate the feasibility of ensuring a dynamic stability by means of an efficient real-time stiffness adaptation for multiple joints and simultaneously maintaining their synchronization. The algorithm has been tested with five healthy subjects showing its efficient behavior in maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from Spinal cord injury and Stroke.Peer ReviewedPostprint (author's final draft

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton

    Get PDF
    Abstract Background Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle exoskeletons. Previously, these controllers have relied on a constant gain to map user’s muscle activity to actuation control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically adapts the gain to the user’s myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered because users could choose their preferred control gain. Methods We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user’s peak muscle activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2 ms-1. We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse dynamics, and exoskeleton mechanics. Results Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about a third of the training time. The resulting controller gain was lower than that seen in previous work (β=1.50±0.14 versus a constant β=2). The adapted gain allowed users more total ankle joint power than that of unassisted walking, increasing ankle power in exchange for a decrease in hip power. Conclusions Our findings indicate that humans prefer to walk with greater ankle mechanical power output than their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic assistance from an exoskeleton can allow humans to adopt gait patterns different from their normal choices for locomotion. In our specific experiment, subjects increased ankle power and decreased hip power to walk with a reduction in metabolic cost. Future exoskeleton devices that rely on proportional myolectric control are likely to demonstrate improved performance by including an adaptive gain.http://deepblue.lib.umich.edu/bitstream/2027.42/115879/1/12984_2015_Article_86.pd
    corecore