29,114 research outputs found

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    Non-classical computing: feasible versus infeasible

    Get PDF
    Physics sets certain limits on what is and is not computable. These limits are very far from having been reached by current technologies. Whilst proposals for hypercomputation are almost certainly infeasible, there are a number of non classical approaches that do hold considerable promise. There are a range of possible architectures that could be implemented on silicon that are distinctly different from the von Neumann model. Beyond this, quantum simulators, which are the quantum equivalent of analogue computers, may be constructable in the near future

    60 GHz Blockage Study Using Phased Arrays

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential for enormous capacity wireless links. However, designing robust communication systems at these frequencies requires that we understand the channel dynamics over both time and space: mmWave signals are extremely vulnerable to blocking and the channel can thus rapidly appear and disappear with small movement of obstacles and reflectors. In rich scattering environments, different paths may experience different blocking trajectories and understanding these multi-path blocking dynamics is essential for developing and assessing beamforming and beam-tracking algorithms. This paper presents the design and experimental results of a novel measurement system which uses phased arrays to perform mmWave dynamic channel measurements. Specifically, human blockage and its effects across multiple paths are investigated with only several microseconds between successive measurements. From these measurements we develop a modeling technique which uses low-rank tensor factorization to separate the available paths so that their joint statistics can be understood.Comment: To appear in the Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 201
    • 

    corecore