27,716 research outputs found

    Decidability properties for fragments of CHR

    Full text link
    We study the decidability of termination for two CHR dialects which, similarly to the Datalog like languages, are defined by using a signature which does not allow function symbols (of arity >0). Both languages allow the use of the = built-in in the body of rules, thus are built on a host language that supports unification. However each imposes one further restriction. The first CHR dialect allows only range-restricted rules, that is, it does not allow the use of variables in the body or in the guard of a rule if they do not appear in the head. We show that the existence of an infinite computation is decidable for this dialect. The second dialect instead limits the number of atoms in the head of rules to one. We prove that in this case, the existence of a terminating computation is decidable. These results show that both dialects are strictly less expressive than Turing Machines. It is worth noting that the language (without function symbols) without these restrictions is as expressive as Turing Machines

    Independence in constraint logic programs

    Full text link
    Studying independence of literals, variables, and substitutions has proven very useful in the context of logic programming (LP). Here we study independence in the broader context of constraint logic programming (CLP). We show that a naive extrapolation of the LP definitions of independence to CLP is unsatisfactory (in fact, wrong) for two reasons. First, because interaction between variables through constraints is more complex than in the case of logic programming. Second, in order to ensure the efUciency of several optimizations not only must independence of the search space be considered, but also an orthogonal issue - "independence of constraint solving." We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow different independence-related optimizations, from parallelism to intelligent backtracking. Sufficient conditions for independence which can be evaluated "a-priori" at run-time are also proposed. Our results suggest that independence, provided a suitable definition is chosen, is even more useful in CLP than in LP
    • …
    corecore