5 research outputs found

    Depth, balancing, and limits of the Elo model

    Get PDF
    -Much work has been devoted to the computational complexity of games. However, they are not necessarily relevant for estimating the complexity in human terms. Therefore, human-centered measures have been proposed, e.g. the depth. This paper discusses the depth of various games, extends it to a continuous measure. We provide new depth results and present tool (given-first-move, pie rule, size extension) for increasing it. We also use these measures for analyzing games and opening moves in Y, NoGo, Killall Go, and the effect of pie rules

    Depth, balancing, and limits of the Elo model

    Get PDF
    International audience—Much work has been devoted to the computational complexity of games. However, they are not necessarily relevant for estimating the complexity in human terms. Therefore, human-centered measures have been proposed, e.g. the depth. This paper discusses the depth of various games, extends it to a continuous measure. We provide new depth results and present tool (given-first-move, pie rule, size extension) for increasing it. We also use these measures for analyzing games and opening moves in Y, NoGo, Killall Go, and the effect of pie rules

    On the complexity of trick-taking card games

    No full text
    IJCAI-13Beijing, China, 3–9 August 2013Determining the complexity of perfect information trick-taking card games is a long standing open problem. This question is worth addressing not only because of the popularity of these games among human players, e.g., DOUBLE DUMMY BRIDGE, but also because of its practical importance as a building block in state-of-the-art playing engines for CONTRACT BRIDGE, SKAT, HEARTS, and SPADES.We define a general class of perfect information two-player trick-taking card games dealing with arbitrary numbers of hands, suits, and suit lengths. We investigate the complexity of determining the winner in various fragments of this game class.Our main result is a proof of PSPACE-completeness for a fragment with bounded number of hands, through a reduction from Generalized Geography. Combining our results with Wästlund's tractability results gives further insight in the complexity landscape of trick-taking card games.nonouirechercheInternationa
    corecore