7 research outputs found

    Direct Exoplanet Detection Using L1 Norm Low-Rank Approximation

    Full text link
    We propose to use low-rank matrix approximation using the component-wise L1-norm for direct imaging of exoplanets. Exoplanet detection by direct imaging is a challenging task for three main reasons: (1) the host star is several orders of magnitude brighter than exoplanets, (2) the angular distance between exoplanets and star is usually very small, and (3) the images are affected by the noises called speckles that are very similar to the exoplanet signal both in shape and intensity. We first empirically examine the statistical noise assumptions of the L1 and L2 models, and then we evaluate the performance of the proposed L1 low-rank approximation (L1-LRA) algorithm based on visual comparisons and receiver operating characteristic (ROC) curves. We compare the results of the L1-LRA with the widely used truncated singular value decomposition (SVD) based on the L2 norm in two different annuli, one close to the star and one far away.Comment: 13 pages, 4 figures, BNAIC/BeNeLearn 202

    Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations

    Get PDF
    Low rank matrix approximation is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns and provides concise representations for the data. Research on low rank approximation usually focus on real matrices. However, in many applications data are binary (categorical) rather than continuous. This leads to the problem of low rank approximation of binary matrix. Here we are given a d×nd \times n binary matrix AA and a small integer kk. The goal is to find two binary matrices UU and VV of sizes d×kd \times k and k×nk \times n respectively, so that the Frobenius norm of A−UVA - U V is minimized. There are two models of this problem, depending on the definition of the dot product of binary vectors: The GF(2)\mathrm{GF}(2) model and the Boolean semiring model. Unlike low rank approximation of real matrix which can be efficiently solved by Singular Value Decomposition, approximation of binary matrix is NPNP-hard even for k=1k=1. In this paper, we consider the problem of Column Subset Selection (CSS), in which one low rank matrix must be formed by kk columns of the data matrix. We characterize the approximation ratio of CSS for binary matrices. For GF(2)GF(2) model, we show the approximation ratio of CSS is bounded by k2+1+k2(2k−1)\frac{k}{2}+1+\frac{k}{2(2^k-1)} and this bound is asymptotically tight. For Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then develop a Generalized CSS (GCSS) procedure in which the columns of one low rank matrix are generated from Boolean formulas operating bitwise on columns of the data matrix. We show the approximation ratio of GCSS is bounded by 2k−1+12^{k-1}+1, and the exponential dependency on kk is inherent.Comment: 38 page
    corecore