240 research outputs found

    Interpolation in Valiant's theory

    Get PDF
    We investigate the following question: if a polynomial can be evaluated at rational points by a polynomial-time boolean algorithm, does it have a polynomial-size arithmetic circuit? We argue that this question is certainly difficult. Answering it negatively would indeed imply that the constant-free versions of the algebraic complexity classes VP and VNP defined by Valiant are different. Answering this question positively would imply a transfer theorem from boolean to algebraic complexity. Our proof method relies on Lagrange interpolation and on recent results connecting the (boolean) counting hierarchy to algebraic complexity classes. As a byproduct we obtain two additional results: (i) The constant-free, degree-unbounded version of Valiant's hypothesis that VP and VNP differ implies the degree-bounded version. This result was previously known to hold for fields of positive characteristic only. (ii) If exponential sums of easy to compute polynomials can be computed efficiently, then the same is true of exponential products. We point out an application of this result to the P=NP problem in the Blum-Shub-Smale model of computation over the field of complex numbers.Comment: 13 page

    An Embedding of the BSS Model of Computation in Light Affine Lambda-Calculus

    Full text link
    This paper brings together two lines of research: implicit characterization of complexity classes by Linear Logic (LL) on the one hand, and computation over an arbitrary ring in the Blum-Shub-Smale (BSS) model on the other. Given a fixed ring structure K we define an extension of Terui's light affine lambda-calculus typed in LAL (Light Affine Logic) with a basic type for K. We show that this calculus captures the polynomial time function class FP(K): every typed term can be evaluated in polynomial time and conversely every polynomial time BSS machine over K can be simulated in this calculus.Comment: 11 pages. A preliminary version appeared as Research Report IAC CNR Roma, N.57 (11/2004), november 200

    Discontinuities in recurrent neural networks

    Get PDF
    This paper studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net-function and a sigmoid-like continuous activation-function. The authors introducePostprint (published version

    Beyond the Existential Theory of the Reals

    Full text link
    We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by B\"{u}rgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow

    The complexity and geometry of numerically solving polynomial systems

    Full text link
    These pages contain a short overview on the state of the art of efficient numerical analysis methods that solve systems of multivariate polynomial equations. We focus on the work of Steve Smale who initiated this research framework, and on the collaboration between Stephen Smale and Michael Shub, which set the foundations of this approach to polynomial system--solving, culminating in the more recent advances of Carlos Beltran, Luis Miguel Pardo, Peter Buergisser and Felipe Cucker
    • …
    corecore