21 research outputs found

    On the Complexity and Approximation of Binary Evidence in Lifted Inference

    Full text link
    Lifted inference algorithms exploit symmetries in probabilistic models to speed up inference. They show impressive performance when calculating unconditional probabilities in relational models, but often resort to non-lifted inference when computing conditional probabilities. The reason is that conditioning on evidence breaks many of the model's symmetries, which can preempt standard lifting techniques. Recent theoretical results show, for example, that conditioning on evidence which corresponds to binary relations is #P-hard, suggesting that no lifting is to be expected in the worst case. In this paper, we balance this negative result by identifying the Boolean rank of the evidence as a key parameter for characterizing the complexity of conditioning in lifted inference. In particular, we show that conditioning on binary evidence with bounded Boolean rank is efficient. This opens up the possibility of approximating evidence by a low-rank Boolean matrix factorization, which we investigate both theoretically and empirically.Comment: To appear in Advances in Neural Information Processing Systems 26 (NIPS), Lake Tahoe, USA, December 201

    First-Order Decomposition Trees

    Full text link
    Lifting attempts to speed up probabilistic inference by exploiting symmetries in the model. Exact lifted inference methods, like their propositional counterparts, work by recursively decomposing the model and the problem. In the propositional case, there exist formal structures, such as decomposition trees (dtrees), that represent such a decomposition and allow us to determine the complexity of inference a priori. However, there is currently no equivalent structure nor analogous complexity results for lifted inference. In this paper, we introduce FO-dtrees, which upgrade propositional dtrees to the first-order level. We show how these trees can characterize a lifted inference solution for a probabilistic logical model (in terms of a sequence of lifted operations), and make a theoretical analysis of the complexity of lifted inference in terms of the novel notion of lifted width for the tree

    Lower Complexity Bounds for Lifted Inference

    Full text link
    One of the big challenges in the development of probabilistic relational (or probabilistic logical) modeling and learning frameworks is the design of inference techniques that operate on the level of the abstract model representation language, rather than on the level of ground, propositional instances of the model. Numerous approaches for such "lifted inference" techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established early on in (Jaeger 2000). However, it is not immediate that these results also apply to the type of modeling languages that currently receive the most attention, i.e., weighted, quantifier-free formulas. In this paper we extend these earlier results, and show that under the assumption that NETIME =/= ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier- and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference, and for knowledge bases not containing the equality predicate.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Symmetry-Aware Marginal Density Estimation

    Full text link
    The Rao-Blackwell theorem is utilized to analyze and improve the scalability of inference in large probabilistic models that exhibit symmetries. A novel marginal density estimator is introduced and shown both analytically and empirically to outperform standard estimators by several orders of magnitude. The developed theory and algorithms apply to a broad class of probabilistic models including statistical relational models considered not susceptible to lifted probabilistic inference.Comment: To appear in proceedings of AAAI 201

    Quantified Markov logic networks

    Get PDF
    Markov Logic Networks (MLNs) are well-suited for expressing statistics such as “with high probability a smoker knows another smoker” but not for expressing statements such as “there is a smoker who knows most other smokers”, which is necessary for modeling, e.g. influencers in social networks. To overcome this shortcoming, we study quantified MLNs which generalize MLNs by introducing statistical universal quantifiers, allowing to express also the latter type of statistics in a principled way. Our main technical contribution is to show that the standard reasoning tasks in quantified MLNs, maximum a posteriori and marginal inference, can be reduced to their respective MLN counterparts in polynomial time

    Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting

    Full text link
    In this paper we study lifted inference for the Weighted First-Order Model Counting problem (WFOMC), which counts the assignments that satisfy a given sentence in first-order logic (FOL); it has applications in Statistical Relational Learning (SRL) and Probabilistic Databases (PDB). We present several results. First, we describe a lifted inference algorithm that generalizes prior approaches in SRL and PDB. Second, we provide a novel dichotomy result for a non-trivial fragment of FO CNF sentences, showing that for each sentence the WFOMC problem is either in PTIME or #P-hard in the size of the input domain; we prove that, in the first case our algorithm solves the WFOMC problem in PTIME, and in the second case it fails. Third, we present several properties of the algorithm. Finally, we discuss limitations of lifted inference for symmetric probabilistic databases (where the weights of ground literals depend only on the relation name, and not on the constants of the domain), and prove the impossibility of a dichotomy result for the complexity of probabilistic inference for the entire language FOL
    corecore