1,793 research outputs found

    Separation dimension of bounded degree graphs

    Full text link
    The 'separation dimension' of a graph GG is the smallest natural number kk for which the vertices of GG can be embedded in Rk\mathbb{R}^k such that any pair of disjoint edges in GG can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F\mathcal{F} of total orders of the vertices of GG such that for any two disjoint edges of GG, there exists at least one total order in F\mathcal{F} in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on nn vertices is Θ(logn)\Theta(\log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree dd is at most 29logdd2^{9log^{\star} d} d. We also demonstrate that the above bound is nearly tight by showing that, for every dd, almost all dd-regular graphs have separation dimension at least d/2\lceil d/2\rceil.Comment: One result proved in this paper is also present in arXiv:1212.675

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    The Minrank of Random Graphs

    Get PDF
    The minrank of a graph GG is the minimum rank of a matrix MM that can be obtained from the adjacency matrix of GG by switching some ones to zeros (i.e., deleting edges) and then setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and distributed storage, and to Valiant's approach for proving superlinear circuit lower bounds (Valiant, Boolean Function Complexity '92). We prove tight bounds on the minrank of random Erd\H{o}s-R\'enyi graphs G(n,p)G(n,p) for all regimes of p[0,1]p\in[0,1]. In particular, for any constant pp, we show that minrk(G)=Θ(n/logn)\mathsf{minrk}(G) = \Theta(n/\log n) with high probability, where GG is chosen from G(n,p)G(n,p). This bound gives a near quadratic improvement over the previous best lower bound of Ω(n)\Omega(\sqrt{n}) (Haviv and Langberg, ISIT'12), and partially settles an open problem raised by Lubetzky and Stav (FOCS '07). Our lower bound matches the well-known upper bound obtained by the "clique covering" solution, and settles the linear index coding problem for random graphs. Finally, our result suggests a new avenue of attack, via derandomization, on Valiant's approach for proving superlinear lower bounds for logarithmic-depth semilinear circuits

    From the Ising and Potts models to the general graph homomorphism polynomial

    Full text link
    In this note we study some of the properties of the generating polynomial for homomorphisms from a graph to at complete weighted graph on qq vertices. We discuss how this polynomial relates to a long list of other well known graph polynomials and the partition functions for different spin models, many of which are specialisations of the homomorphism polynomial. We also identify the smallest graphs which are not determined by their homomorphism polynomials for q=2q=2 and q=3q=3 and compare this with the corresponding minimal examples for the UU-polynomial, which generalizes the well known Tutte-polynomal.Comment: V2. Extended versio
    corecore