44 research outputs found

    Optimizing an array of antennas for cellular coverage from a high altitude platform

    Get PDF
    In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Scalable Video Coding in Fading Hybrid Satellite-Terrestrial Networks

    Get PDF

    Dynamic frequency assignment for mobile users in multibeam satellite constellations

    Get PDF
    Els nivells de flexibilitat i escalabilitat mai vistos de la propera generaci贸 de sistemes de comunicaci贸 per sat猫l路lit exigeixen nous algorismes de gesti贸 de recursos que s'adaptin a contextos din脿mics. El futur entorn dels serveis de comunicaci贸 per sat猫l路lit estar脿 definit per un nombre m茅s gran d'usuaris, una gran part dels quals correspondr脿 a usuaris m貌bils com avions o vaixells. El repte addicional que introdueixen aquests usuaris 茅s abordar la incertesa espai-temporal que es presenta en forma de retards, canvis en la seva traject貌ria, o tots dos. At猫s que els usuaris m貌bils constituiran un segment important del mercat, els operadors de sat猫l路lits prioritzen l'aprofitament dels avan莽ats sistemes digitals per desenvolupar estrat猫gies flexibles d'assignaci贸 de recursos que siguin robustes davant de les bases d'usuaris din脿miques. Un dels problemes clau en aquest context 茅s com gestionar l'espectre de freq眉猫ncies de manera eficient. Mentre que nombroses solucions aborden escenaris d'assignaci贸 de din脿mica freq眉猫ncies, el nivell addicional de complexitat que presenten els usuaris m貌bils no ha estat prou estudiat, i no 茅s clar si els nous algorismes d'assignaci贸 de freq眉猫ncies poden abordar la incertesa espai-temporal. Concretament, sostenim que els canvis inesperats en la posici贸 dels usuaris introdueixen noves restriccions en l'assignaci贸 de freq眉猫ncies que els algoritmes la literatura podrien no ser capa莽os de complir, especialment si les decisions s'han de prendre en temps real i a escala. Per solucionar aquesta limitaci贸, proposem un algorisme de gesti贸 din脿mica de freq眉猫ncies basat en programaci贸 lineal entera que assigna recursos a escenaris amb usuaris tant fixos com m貌bils, tenint en compte la incertesa espai-temporal d'aquests 煤ltims. El nostre m猫tode inclou tant la planificaci贸 a llarg termini com l'operaci贸 en temps real, una sinergia que no ha estat prou explorada per a les comunicacions per sat猫l路lit i que 茅s cr铆tica quan s'opera sota incertesa. PLos niveles de flexibilidad y escalabilidad nunca vistos de la pr贸xima generaci贸n de sistemas de comunicaci贸n por sat茅lite exigen nuevos algoritmos de gesti贸n de recursos que se adapten a contextos din谩micos. El futuro entorno de los servicios de comunicaci贸n por sat茅lite estar谩 definido por un mayor n煤mero de usuarios, una gran parte de los cuales corresponder谩 a usuarios m贸viles como aviones o barcos. El reto adicional que introducen estos usuarios es abordar la incertidumbre espacio-temporal que se presenta en forma de retrasos, cambios en su trayectoria, o ambos. Dado que los usuarios m贸viles constituir谩n un segmento importante del mercado, los operadores de sat茅lites dan prioridad al aprovechamiento de los avanzadas sistemas digitales para desarrollar estrategias flexibles de asignaci贸n de recursos que sean robustas frente a las bases de usuarios din谩micas. Uno de los problemas clave en este contexto es c贸mo gestionar el espectro de frecuencias de forma eficiente. Mientras que numerosas soluciones abordan escenarios de asignaci贸n din谩mica de frecuencias, el nivel adicional de complejidad que presentan los usuarios m贸viles no ha sido suficientemente estudiado, y no est谩 claro si los nuevos algoritmos de asignaci贸n de frecuencias pueden abordar la incertidumbre espacio-temporal. En concreto, sostenemos que los cambios inesperados en la posici贸n de los usuarios introducen nuevas restricciones en la asignaci贸n de frecuencias que los algoritmos la literatura podr铆an no ser capaces de cumplir, especialmente si las decisiones deben tomarse en tiempo real y a escala. Para solventar esta limitaci贸n, proponemos un algoritmo de gesti贸n din谩mica de frecuencias basado en la programaci贸n lineal entera que asigna recursos en escenarios con usuarios tanto fijos como m贸viles, teniendo en cuenta la incertidumbre espacio-temporal de estos 煤ltimos. Nuestro m茅todo incluye tanto la planificaci贸n a largo plazo como la operaci贸n en tiempo real, una sinergia que no ha sido suficientThe unprecedented levels of flexibility and scalability of the next generation of communication satellite systems call for new resource management algorithms that adapt to dynamic environments. The upcoming landscape of satellite communication services will be defined by an increased number of unique users, a large portion of which will correspond to mobile users such as planes or ships. The additional challenge introduced by these users is addressing the spatiotemporal uncertainty that comes in the form of delays, changes in their trajectory, or both. Given that mobile users will constitute an important segment of the market, satellite operators prioritize leveraging modern digital payloads to develop flexible resource allocation strategies that are robust against dynamic user bases. One of the key problems in this context is how to manage the frequency spectrum efficiently. While numerous solutions address dynamic frequency assignment scenarios, the additional layer of complexity presented by mobile users has not been sufficiently studied, and it is unclear whether novel frequency assignment algorithms can address spatiotemporal uncertainty. Specifically, we argue that unexpected changes in the position of users introduce new restrictions into the frequency assignment, which previous algorithms in the literature might not be able to meet, especially if decisions need to be made in real-time and at scale. To address this gap, we propose a dynamic frequency management algorithm based on integer linear programming that assigns resources in scenarios with both fixed and mobile users, accounting for the spatiotemporal uncertainty of the latter. Our method includes both long-term planning and real-time operation, a synergy that has not been sufficiently explored for satellite communications and proves to be critical when operating under uncertainty. To fulfill the problem鈥檚 scope, we propose different strategies that extend a state-of-the-art frequency management algOutgoin

    Publications of the Jet Propulsion Laboratory, 1984

    Get PDF
    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature

    C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Get PDF
    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users
    corecore