8 research outputs found

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Subject Index Volumes 1–200

    Get PDF

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition
    corecore