16 research outputs found

    A Novel Transmission Scheme for the KK-user Broadcast Channel with Delayed CSIT

    Full text link
    The state-dependent KK-user memoryless Broadcast Channel~(BC) with state feedback is investigated. We propose a novel transmission scheme and derive its corresponding achievable rate region, which, compared to some general schemes that deal with feedback, has the advantage of being relatively simple and thus is easy to evaluate. In particular, it is shown that the capacity region of the symmetric erasure BC with an arbitrary input alphabet size is achievable with the proposed scheme. For the fading Gaussian BC, we derive a symmetric achievable rate as a function of the signal-to-noise ratio~(SNR) and a small set of parameters. Besides achieving the optimal degrees of freedom at high SNR, the proposed scheme is shown, through numerical results, to outperform existing schemes from the literature in the finite SNR regime.Comment: 30 pages, 3 figures, submitted to IEEE Transactions on Wireless Communications (revised version

    Secret Communication over Broadcast Erasure Channels with State-feedback

    Full text link
    We consider a 1-to-KK communication scenario, where a source transmits private messages to KK receivers through a broadcast erasure channel, and the receivers feed back strictly causally and publicly their channel states after each transmission. We explore the achievable rate region when we require that the message to each receiver remains secret - in the information theoretical sense - from all the other receivers. We characterize the capacity of secure communication in all the cases where the capacity of the 1-to-KK communication scenario without the requirement of security is known. As a special case, we characterize the secret-message capacity of a single receiver point-to-point erasure channel with public state-feedback in the presence of a passive eavesdropper. We find that in all cases where we have an exact characterization, we can achieve the capacity by using linear complexity two-phase schemes: in the first phase we create appropriate secret keys, and in the second phase we use them to encrypt each message. We find that the amount of key we need is smaller than the size of the message, and equal to the amount of encrypted message the potential eavesdroppers jointly collect. Moreover, we prove that a dishonest receiver that provides deceptive feedback cannot diminish the rate experienced by the honest receivers. We also develop a converse proof which reflects the two-phase structure of our achievability scheme. As a side result, our technique leads to a new outer bound proof for the non-secure communication problem

    Retroactive Anti-Jamming for MISO Broadcast Channels

    Full text link
    Jamming attacks can significantly impact the performance of wireless communication systems. In addition to reducing the capacity, such attacks may lead to insurmountable overhead in terms of re-transmissions and increased power consumption. In this paper, we consider the multiple-input single-output (MISO) broadcast channel (BC) in the presence of a jamming attack in which a subset of the receivers can be jammed at any given time. Further, countermeasures for mitigating the effects of such jamming attacks are presented. The effectiveness of these anti-jamming countermeasures is quantified in terms of the degrees-of-freedom (DoF) of the MISO BC under various assumptions regarding the availability of the channel state information (CSIT) and the jammer state information at the transmitter (JSIT). The main contribution of this paper is the characterization of the DoF region of the two user MISO BC under various assumptions on the availability of CSIT and JSIT. Partial extensions to the multi-user broadcast channels are also presented.Comment: submitted to IEEE Transactions on Information Theor
    corecore