1,226 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Interference Mitigation Through Limited Receiver Cooperation

    Full text link
    Interference is a major issue limiting the performance in wireless networks. Cooperation among receivers can help mitigate interference by forming distributed MIMO systems. The rate at which receivers cooperate, however, is limited in most scenarios. How much interference can one bit of receiver cooperation mitigate? In this paper, we study the two-user Gaussian interference channel with conferencing decoders to answer this question in a simple setting. We identify two regions regarding the gain from receiver cooperation: linear and saturation regions. In the linear region receiver cooperation is efficient and provides a degrees-of-freedom gain, which is either one cooperation bit buys one more bit or two cooperation bits buy one more bit until saturation. In the saturation region receiver cooperation is inefficient and provides a power gain, which is at most a constant regardless of the rate at which receivers cooperate. The conclusion is drawn from the characterization of capacity region to within two bits. The proposed strategy consists of two parts: (1) the transmission scheme, where superposition encoding with a simple power split is employed, and (2) the cooperative protocol, where one receiver quantize-bin-and-forwards its received signal, and the other after receiving the side information decode-bin-and-forwards its received signal.Comment: Submitted to IEEE Transactions on Information Theory. 69 pages, 14 figure
    • …
    corecore