8,870 research outputs found

    On the Capacity Bounds of Undirected Networks

    Full text link
    In this work we improve on the bounds presented by Li&Li for network coding gain in the undirected case. A tightened bound for the undirected multicast problem with three terminals is derived. An interesting result shows that with fractional routing, routing throughput can achieve at least 75% of the coding throughput. A tighter bound for the general multicast problem with any number of terminals shows that coding gain is strictly less than 2. Our derived bound depends on the number of terminals in the multicast network and approaches 2 for arbitrarily large number of terminals.Comment: 5 pages, 5 figures, ISIT 2007 conferenc

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    Appraising feasibility and maximal flow capacity of a network

    Get PDF
    The use of the dual graph in determining the value of the maximal flow capacity of an undirected network has been extended to directed networks. A directed dual graph is defined such that the length of the shortest route through this dual is equal to the maximal flow capacity of its directed primal. Feasibility of a specified exogenous flow for networks having positive lower bounds on arc flows can also be appraised. Infeasibility is indicated by a dual cycle of negative length. (Author)http://archive.org/details/appraisingfeasib00mcm

    An asymptotically optimal push-pull method for multicasting over a random network

    Full text link
    We consider allcast and multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected links whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate without network coding.Comment: 13 pages, extended version of paper presented at the IEEE International Symposium on Information Theory (ISIT) 2012, minor revision to text to address review comments, to appear in IEEE Transactions in information theor

    Graph Orientation and Flows Over Time

    Get PDF
    Flows over time are used to model many real-world logistic and routing problems. The networks underlying such problems -- streets, tracks, etc. -- are inherently undirected and directions are only imposed on them to reduce the danger of colliding vehicles and similar problems. Thus the question arises, what influence the orientation of the network has on the network flow over time problem that is being solved on the oriented network. In the literature, this is also referred to as the contraflow or lane reversal problem. We introduce and analyze the price of orientation: How much flow is lost in any orientation of the network if the time horizon remains fixed? We prove that there is always an orientation where we can still send 13\frac{1}{3} of the flow and this bound is tight. For the special case of networks with a single source or sink, this fraction is 12\frac12 which is again tight. We present more results of similar flavor and also show non-approximability results for finding the best orientation for single and multicommodity maximum flows over time

    Reciprocity in Social Networks with Capacity Constraints

    Full text link
    Directed links -- representing asymmetric social ties or interactions (e.g., "follower-followee") -- arise naturally in many social networks and other complex networks, giving rise to directed graphs (or digraphs) as basic topological models for these networks. Reciprocity, defined for a digraph as the percentage of edges with a reciprocal edge, is a key metric that has been used in the literature to compare different directed networks and provide "hints" about their structural properties: for example, are reciprocal edges generated randomly by chance or are there other processes driving their generation? In this paper we study the problem of maximizing achievable reciprocity for an ensemble of digraphs with the same prescribed in- and out-degree sequences. We show that the maximum reciprocity hinges crucially on the in- and out-degree sequences, which may be intuitively interpreted as constraints on some "social capacities" of nodes and impose fundamental limits on achievable reciprocity. We show that it is NP-complete to decide the achievability of a simple upper bound on maximum reciprocity, and provide conditions for achieving it. We demonstrate that many real networks exhibit reciprocities surprisingly close to the upper bound, which implies that users in these social networks are in a sense more "social" than suggested by the empirical reciprocity alone in that they are more willing to reciprocate, subject to their "social capacity" constraints. We find some surprising linear relationships between empirical reciprocity and the bound. We also show that a particular type of small network motifs that we call 3-paths are the major source of loss in reciprocity for real networks
    corecore