4,055 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Modeling Networks-on-Chip at System Level with the MARTE UML profile

    Get PDF
    International audienceThe study of Networks on Chips (NoCs) is a research field that primarily addresses the global communication in Systems-on-Chip (SoCs). The selected topology and the routing algorithm play a prime role in the performance of NoC architectures. In order to handle the design complexity and meet the tight time-to-market constraints, it is important to automate most of these NoC design phases. The extension of the UML language called UML profile for MARTE (Modeling and Analysis of Real-Time and Embedded systems) specifies some concepts for model-based design and analysis of real time and embedded systems. This paper presents a MARTE based methodology for modeling concepts of NoC based architectures. It aims at improving the effectiveness of the MARTE standard by clarifying some notations and extending some definitions in the standard, in order to be able to model complex architectures like NoCs

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Multipoint connection management in ATM networks

    Get PDF

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Dynamic coordination in brain and mind

    Get PDF
    Our goal here is to clarify the concept of 'dynamic coordination', and to note major issues that it raises for the cognitive neurosciences. In general, coordinating interactions are those that produce coherent and relevant overall patterns of activity, while preserving the essential individual identities and functions of the activities coordinated. 'Dynamic coordination' is the coordination that is created on a moment-by-moment basis so as to deal effectively with unpredictable aspects of the current situation. We distinguish different computational goals for dynamic coordination, and outline issues that arise concerning local cortical circuits, brain systems, cognition, and evolution. Our focus here is on dynamic coordination by widely distributed processes of self-organisation, but we also discuss the role of central executive processes

    Dynamic coordination in brain and mind

    Get PDF
    Our goal here is to clarify the concept of 'dynamic coordination', and to note major issues that it raises for the cognitive neurosciences. In general, coordinating interactions are those that produce coherent and relevant overall patterns of activity, while preserving the essential individual identities and functions of the activities coordinated. 'Dynamic coordination' is the coordination that is created on a moment-by-moment basis so as to deal effectively with unpredictable aspects of the current situation. We distinguish different computational goals for dynamic coordination, and outline issues that arise concerning local cortical circuits, brain systems, cognition, and evolution. Our focus here is on dynamic coordination by widely distributed processes of self-organisation, but we also discuss the role of central executive processes
    • …
    corecore