21 research outputs found

    Building graph representations of deep vector embeddings

    Get PDF
    Patterns stored within pre-trained deep neural networks compose large and powerful descriptive languages that can be used for many different purposes. Typically, deep network representations are implemented within vector embedding spaces, which enables the use of traditional machine learning algorithms on top of them. In this short paper we propose the construction of a graph embedding space instead, introducing a methodology to transform the knowledge coded within a deep convolutional network into a topological space (i.e. a network). We outline how such graph can hold data instances, data features, relations between instances and features, and relations among features. Finally, we introduce some preliminary experiments to illustrate how the resultant graph embedding space can be exploited through graph analytics algorithmsThis work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015- 0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST).Peer ReviewedPostprint (published version

    Feature discriminativity estimation in CNNs for transfer learning

    Get PDF
    The purpose of feature extraction on convolutional neural networks is to reuse deep representations learnt for a pre-trained model to solve a new, potentially unrelated problem. However, raw feature extraction from all layers is unfeasible given the massive size of these networks. Recently, a supervised method using complexity reduction was proposed, resulting in significant improvements in performance for transfer learning tasks. This approach first computes the discriminative power of features, and then discretises them using thresholds computed for the task. In this paper, we analyse the behaviour of these thresholds, with the purpose of finding a methodology for their estimation. After a comprehensive study, we find a very strong correlation between problem size and threshold value, with coefficient of determination above 90%. These results allow us to propose a unified model for threshold estimation, with potential application to transfer learning tasks.This work is partially supported by BSC-IBM Deep Learning Center agreement, the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), the Spanish Ministry of Science and Technology through TIN2015-65316-P project and the Generalitat de Catalunya (contract 2017-SGR-1414).Peer ReviewedPostprint (author's final draft

    A hybrid deep learning approach towards building an intelligent system for pneumonia detection in chest X-ray images

    Get PDF
    Pneumonia is a major cause for the death of children. In order to overcome the subjectivity and time consumption of the traditional detection of pneumonia from chest X-ray images; this work hypothesized that a hybrid deep learning system that consists of a convolutional neural network (CNN) model with another type of classifiers will improve the performance of the detection system. Three types of classifiers (support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF) were used along with the traditional CNN classification system (Softmax) to automatically detect pneumonia from chest X-ray images. The performance of the hybrid systems was comparable to that of the traditional CNN model with Softmax in terms of accuracy, precision, and specificity; except for the RF hybrid system which had less performance than the others. On the other hand, KNN hybrid system had the best consumption time, followed by the SVM, Softmax, and lastly the RF system. However, this improvement in consumption time (up to 4 folds) was in the expense of the sensitivity. A new hybrid artificial intelligence methodology for pneumonia detection has been implemented using small-sized chest X-ray images. The novel system achieved a very efficient performance with a short classification consumption time

    Studying the impact of the Full-Network embedding on multimodal pipelines

    Get PDF
    The current state of the art for image annotation and image retrieval tasks is obtained through deep neural network multimodal pipelines, which combine an image representation and a text representation into a shared embedding space. In this paper we evaluate the impact of using the Full-Network embedding (FNE) in this setting, replacing the original image representation in four competitive multimodal embedding generation schemes. Unlike the one-layer image embeddings typically used by most approaches, the Full-Network embedding provides a multi-scale discrete representation of images, which results in richer characterisations. Extensive testing is performed on three different datasets comparing the performance of the studied variants and the impact of the FNE on a levelled playground, i.e., under equality of data used, source CNN models and hyper-parameter tuning. The results obtained indicate that the Full-Network embedding is consistently superior to the one-layer embedding. Furthermore, its impact on performance is superior to the improvement stemming from the other variants studied. These results motivate the integration of the Full-Network embedding on any multimodal embedding generation scheme.This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015- 0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST).Peer ReviewedPostprint (author's final draft
    corecore