22,828 research outputs found

    Differentially private partitioned variational inference

    Full text link
    Learning a privacy-preserving model from sensitive data which are distributed across multiple devices is an increasingly important problem. The problem is often formulated in the federated learning context, with the aim of learning a single global model while keeping the data distributed. Moreover, Bayesian learning is a popular approach for modelling, since it naturally supports reliable uncertainty estimates. However, Bayesian learning is generally intractable even with centralised non-private data and so approximation techniques such as variational inference are a necessity. Variational inference has recently been extended to the non-private federated learning setting via the partitioned variational inference algorithm. For privacy protection, the current gold standard is called differential privacy. Differential privacy guarantees privacy in a strong, mathematically clearly defined sense. In this paper, we present differentially private partitioned variational inference, the first general framework for learning a variational approximation to a Bayesian posterior distribution in the federated learning setting while minimising the number of communication rounds and providing differential privacy guarantees for data subjects. We propose three alternative implementations in the general framework, one based on perturbing local optimisation runs done by individual parties, and two based on perturbing updates to the global model (one using a version of federated averaging, the second one adding virtual parties to the protocol), and compare their properties both theoretically and empirically.Comment: Published in TMLR 04/2023: https://openreview.net/forum?id=55Bcghgic

    A spatio-temporal framework for modelling wastewater concentration during the COVID-19 pandemic

    Get PDF
    The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model’s predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance

    Statistical phase estimation and error mitigation on a superconducting quantum processor

    Full text link
    Quantum phase estimation (QPE) is a key quantum algorithm, which has been widely studied as a method to perform chemistry and solid-state calculations on future fault-tolerant quantum computers. Recently, several authors have proposed statistical alternatives to QPE that have benefits on early fault-tolerant devices, including shorter circuits and better suitability for error mitigation techniques. However, practical implementations of the algorithm on real quantum processors are lacking. In this paper we practically implement statistical phase estimation on Rigetti's superconducting processors. We specifically use the method of Lin and Tong [PRX Quantum 3, 010318 (2022)] using the improved Fourier approximation of Wan et al. [PRL 129, 030503 (2022)], and applying a variational compilation technique to reduce circuit depth. We then incorporate error mitigation strategies including zero-noise extrapolation and readout error mitigation with bit-flip averaging. We propose a simple method to estimate energies from the statistical phase estimation data, which is found to improve the accuracy in final energy estimates by one to two orders of magnitude with respect to prior theoretical bounds, reducing the cost to perform accurate phase estimation calculations. We apply these methods to chemistry problems for active spaces up to 4 electrons in 4 orbitals, including the application of a quantum embedding method, and use them to correctly estimate energies within chemical precision. Our work demonstrates that statistical phase estimation has a natural resilience to noise, particularly after mitigating coherent errors, and can achieve far higher accuracy than suggested by previous analysis, demonstrating its potential as a valuable quantum algorithm for early fault-tolerant devices.Comment: 24 pages, 13 figure

    Examples of works to practice staccato technique in clarinet instrument

    Get PDF
    Klarnetin staccato tekniğini güçlendirme aşamaları eser çalışmalarıyla uygulanmıştır. Staccato geçişlerini hızlandıracak ritim ve nüans çalışmalarına yer verilmiştir. Çalışmanın en önemli amacı sadece staccato çalışması değil parmak-dilin eş zamanlı uyumunun hassasiyeti üzerinde de durulmasıdır. Staccato çalışmalarını daha verimli hale getirmek için eser çalışmasının içinde etüt çalışmasına da yer verilmiştir. Çalışmaların üzerinde titizlikle durulması staccato çalışmasının ilham verici etkisi ile müzikal kimliğe yeni bir boyut kazandırmıştır. Sekiz özgün eser çalışmasının her aşaması anlatılmıştır. Her aşamanın bir sonraki performans ve tekniği güçlendirmesi esas alınmıştır. Bu çalışmada staccato tekniğinin hangi alanlarda kullanıldığı, nasıl sonuçlar elde edildiği bilgisine yer verilmiştir. Notaların parmak ve dil uyumu ile nasıl şekilleneceği ve nasıl bir çalışma disiplini içinde gerçekleşeceği planlanmıştır. Kamış-nota-diyafram-parmak-dil-nüans ve disiplin kavramlarının staccato tekniğinde ayrılmaz bir bütün olduğu saptanmıştır. Araştırmada literatür taraması yapılarak staccato ile ilgili çalışmalar taranmıştır. Tarama sonucunda klarnet tekniğin de kullanılan staccato eser çalışmasının az olduğu tespit edilmiştir. Metot taramasında da etüt çalışmasının daha çok olduğu saptanmıştır. Böylelikle klarnetin staccato tekniğini hızlandırma ve güçlendirme çalışmaları sunulmuştur. Staccato etüt çalışmaları yapılırken, araya eser çalışmasının girmesi beyni rahatlattığı ve istekliliği daha arttırdığı gözlemlenmiştir. Staccato çalışmasını yaparken doğru bir kamış seçimi üzerinde de durulmuştur. Staccato tekniğini doğru çalışmak için doğru bir kamışın dil hızını arttırdığı saptanmıştır. Doğru bir kamış seçimi kamıştan rahat ses çıkmasına bağlıdır. Kamış, dil atma gücünü vermiyorsa daha doğru bir kamış seçiminin yapılması gerekliliği vurgulanmıştır. Staccato çalışmalarında baştan sona bir eseri yorumlamak zor olabilir. Bu açıdan çalışma, verilen müzikal nüanslara uymanın, dil atış performansını rahatlattığını ortaya koymuştur. Gelecek nesillere edinilen bilgi ve birikimlerin aktarılması ve geliştirici olması teşvik edilmiştir. Çıkacak eserlerin nasıl çözüleceği, staccato tekniğinin nasıl üstesinden gelinebileceği anlatılmıştır. Staccato tekniğinin daha kısa sürede çözüme kavuşturulması amaç edinilmiştir. Parmakların yerlerini öğrettiğimiz kadar belleğimize de çalışmaların kaydedilmesi önemlidir. Gösterilen azmin ve sabrın sonucu olarak ortaya çıkan yapıt başarıyı daha da yukarı seviyelere çıkaracaktır

    Dual dynamic programming for stochastic programs over an infinite horizon

    Full text link
    We consider a dual dynamic programming algorithm for solving stochastic programs over an infinite horizon. We show non-asymptotic convergence results when using an explorative strategy, and we then enhance this result by reducing the dependence of the effective planning horizon from quadratic to linear. This improvement is achieved by combining the forward and backward phases from dual dynamic programming into a single iteration. We then apply our algorithms to a class of problems called hierarchical stationary stochastic programs, where the cost function is a stochastic multi-stage program. The hierarchical program can model problems with a hierarchy of decision-making, e.g., how long-term decisions influence day-to-day operations. We show that when the subproblems are solved inexactly via a dynamic stochastic approximation-type method, the resulting hierarchical dual dynamic programming can find approximately optimal solutions in finite time. Preliminary numerical results show the practical benefits of using the explorative strategy for solving the Brazilian hydro-thermal planning problem and economic dispatch, as well as the potential to exploit parallel computing.Comment: 45 pages. New experiments for hierarchical problem and writing update

    Single Image Depth Prediction Made Better: A Multivariate Gaussian Take

    Full text link
    Neural-network-based single image depth prediction (SIDP) is a challenging task where the goal is to predict the scene's per-pixel depth at test time. Since the problem, by definition, is ill-posed, the fundamental goal is to come up with an approach that can reliably model the scene depth from a set of training examples. In the pursuit of perfect depth estimation, most existing state-of-the-art learning techniques predict a single scalar depth value per-pixel. Yet, it is well-known that the trained model has accuracy limits and can predict imprecise depth. Therefore, an SIDP approach must be mindful of the expected depth variations in the model's prediction at test time. Accordingly, we introduce an approach that performs continuous modeling of per-pixel depth, where we can predict and reason about the per-pixel depth and its distribution. To this end, we model per-pixel scene depth using a multivariate Gaussian distribution. Moreover, contrary to the existing uncertainty modeling methods -- in the same spirit, where per-pixel depth is assumed to be independent, we introduce per-pixel covariance modeling that encodes its depth dependency w.r.t all the scene points. Unfortunately, per-pixel depth covariance modeling leads to a computationally expensive continuous loss function, which we solve efficiently using the learned low-rank approximation of the overall covariance matrix. Notably, when tested on benchmark datasets such as KITTI, NYU, and SUN-RGB-D, the SIDP model obtained by optimizing our loss function shows state-of-the-art results. Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.Comment: Accepted to IEEE/CVF CVPR 2023. Draft info: 17 pages, 13 Figures, 9 Table

    Dynamic Subspace Estimation with Grassmannian Geodesics

    Full text link
    Dynamic subspace estimation, or subspace tracking, is a fundamental problem in statistical signal processing and machine learning. This paper considers a geodesic model for time-varying subspaces. The natural objective function for this model is non-convex. We propose a novel algorithm for minimizing this objective and estimating the parameters of the model from data with Grassmannian-constrained optimization. We show that with this algorithm, the objective is monotonically non-increasing. We demonstrate the performance of this model and our algorithm on synthetic data, video data, and dynamic fMRI data

    DiffRF: Rendering-Guided 3D Radiance Field Diffusion

    Full text link
    We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.Comment: Project page: https://sirwyver.github.io/DiffRF/ Video: https://youtu.be/qETBcLu8SUk - CVPR 2023 Highlight - updated evaluations after fixing initial data mapping error on all method

    PreFair: Privately Generating Justifiably Fair Synthetic Data

    Full text link
    When a database is protected by Differential Privacy (DP), its usability is limited in scope. In this scenario, generating a synthetic version of the data that mimics the properties of the private data allows users to perform any operation on the synthetic data, while maintaining the privacy of the original data. Therefore, multiple works have been devoted to devising systems for DP synthetic data generation. However, such systems may preserve or even magnify properties of the data that make it unfair, endering the synthetic data unfit for use. In this work, we present PreFair, a system that allows for DP fair synthetic data generation. PreFair extends the state-of-the-art DP data generation mechanisms by incorporating a causal fairness criterion that ensures fair synthetic data. We adapt the notion of justifiable fairness to fit the synthetic data generation scenario. We further study the problem of generating DP fair synthetic data, showing its intractability and designing algorithms that are optimal under certain assumptions. We also provide an extensive experimental evaluation, showing that PreFair generates synthetic data that is significantly fairer than the data generated by leading DP data generation mechanisms, while remaining faithful to the private data.Comment: 15 pages, 11 figure

    A variational Bayesian inference technique for model updating of structural systems with unknown noise statistics

    Get PDF
    Dynamic models of structural and mechanical systems can be updated to match the measured data through a Bayesian inference process. However, the performance of classical (non-adaptive) Bayesian model updating approaches decreases significantly when the pre-assumed statistical characteristics of the model prediction error are violated. To overcome this issue, this paper presents an adaptive recursive variational Bayesian approach to estimate the statistical characteristics of the prediction error jointly with the unknown model parameters. This approach improves the accuracy and robustness of model updating by including the estimation of model prediction error. The performance of this approach is demonstrated using numerically simulated data obtained from a structural frame with material non-linearity under earthquake excitation. Results show that in the presence of non-stationary noise/error, the non-adaptive approach fails to estimate unknown model parameters, whereas the proposed approach can accurately estimate them
    corecore