
II International Conference on Particle-based Methods - Fundamentals and Applications
PARTICLES 2011
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Abstract. Particle methods have become indispensible in conformation dynamics to
compute transition rates in protein folding, binding processes and molecular design, to
mention a few. Conformation dynamics requires at a decomposition of a molecule’s posi-
tion space into metastable conformations. In this paper, we show how this decomposition
can be obtained via the design of either “soft” or “hard” molecular conformations. We
show, that the soft approach results in a larger metastabilitiy of the decomposition and
is thus more advantegous. This is illustrated by a simulation of Alanine Dipeptide.

1 Introduction

In practice, molecular simulations are carried out by solving the equations of motion
of molecular dynamics. The solution of the ordinary differential equation results in a
trajectory in state space (position and momentum space) and is a model for a closed
system behavior of the molecule, i.e. a simulation at constant energy. The trajectory
is analyzed in position space in order to derive statistical information about the molec-
ular system. In this article, we focus on simulations at constant temperature (canonical
ensemble) instead of constant energy (microcanonical ensemble). The dynamical system
under consideration is a Markov chain in position space which will be derived in the next
section.

Molecular simulations are not as easy as it seems at a first glance. If we observe certain
internal coordinates of a simple molecule (like the C-C-C-C torsion angle of butane in
Figure 1), we see that the mentioned Markov chain comprises metastabilities. The system
jumps between so-called metastable conformations. The aim of conformation dynamics
is to analyze this jump process, i.e. to identify the metastable conformations in position
space, their statistical weights, and to compute the transition probabilities between them
[1, 2, 9].
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Although it seems to be a good idea to derive this information from a long-term Markov
chain, the metastabilities are problematic from a statistical point of view. Since jumps
between metastable conformations are rare events, even a long-term simulation (carried
out by the largest parallel computing machines) does not provide enough statistical infor-
mation for the derivation of the transition patterns. Furthermore, counting the number
of Markov states per metastable conformation is not a good idea for deriving statistical
weights of the conformations, because rapid (global) equilibration is avoided by the rare
events.

A rather old idea to circumvent the problem of simulation in the presence of high-
energy barriers is given by transition state theory. In this context, many researchers
think of a one dimensional reaction coordinate (plotting the reaction coordinate against
the free energy level). Two minima representing the educt as well as the product, respec-
tively. An energy barrier between these two states has a local maximum (the transition
state). Furthermore, the energy difference between the transition state and the minimum
determines the reaction rate.

This simple picture does not hold for all kinds of molecular simulations. Briefly, the
higher the barrier the better are the results from transition state theory. In conformation
dynamics this insufficient picture is corrected. The metastable conformations are not
defined as local minima of a free energy landscape. In contrast, the whole high-dimensional
position space is decomposed into metastable conformations. More precisely, in Figure 1
the y-axis (representing the position space) may be decomposed into three intervals which
are called metastable conformations in this context. Transition state theory searches for a
certain point at which the molecular system switches from conformation A to conformation
B, whereas a conventional, set-based decomposition approach of conformation dynamics
aims at finding high-dimensional transition ”hyper planes”. In this article, we will replace
these transition hyper planes by soft barriers. That means we will replace a set-based
decomposition of the position space (hard clustering) by a partition of unity decomposition
of the position space using membership functions (soft clustering). Although it seems
that this soft clustering leads to rather ”unstable” metastable conformations, this is not
true. We will give an illustrative example in section 5. In fact, our approach provides
conformations with the highest ”metastability” and (assuming a perfect discretization)
the systematic error of the set-based transition rates described by [8] vanishes. Simply
speaking, our more complex picture does hold for all molecular systems and provides an
effective analysis of the transition pattern between molecular conformations.

2 Statistical Mechanics

In a canonical ensemble the state of a biomolecule is not described by a single global
minimum energy structure, but by a statistical ensemble in a phase space Γ. For x =
(q, p) ∈ Γ = Ω×Rd the positions q and momenta p of each atom in the molecule are given
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Figure 1: The longterm simulation of butene clearly shows three metastable conformations of the

molecule.

according to the Boltzmann distribution:

π(q, p) ∝ exp(−βH(q, p)). (1)

Here β = 1/kBT is the inverse temperature T multiplied with the Boltzmann constant
kB, and H denotes the Hamiltonian function which is given by H(q, p) = V (q) +K(p),
where V (q) is the potential and K(p) the kinetic energy. This canonical density can be
split into a distribution of momenta η(p) and positions π(q) where

π(q) ∝ exp(−βV (q)) and η(p) ∝ exp(−βK(p)).

Let us consider the Hamiltonian dynamics which is given by

q̇ = p , ṗ = −∇V (q), (2)

where ∇V (q) is the gradient of an energy function (the potential) V : Ω → R. It is well
known, that (2) can be the starting point for a trajectory based description of this system
in a microcanonical ensemble. In contrast, we now consider a system which is embedded
in a heat bath with constant temperature T in a canonical ensemble. According to (2)
the corresponding flow Φτ for a time span τ > 0 is given by

(q(t), p(t)) = Φτ (qn, pn), n ∈ N.

Let Πq be the projection of the state (q, p) onto the position q and let further p be chosen
randomly according to the distribution η(p), then

qi+1 = ΠqΦ
τ (qi, pi)

3

901
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Figure 2: Left: Energy landscape of a rigid molecule with a unique minimum. Right: The energy

landscape of biomolecules is in general rough, with multiple local minima.

describes a Markov process. The ith state depends on the preceding state only.
It can be shown, that this assumption of Markovianity implies that the corresponding

Liouville operator is time independent e.g. [9]. By projecting this Liouville operator onto
the position space the behavior of the system can be described by a transition function
[9], which is given by

p(τ, f, h) =

∫

Ω

T τf(q)h(q)π(q) dq, (3)

where

T τf(q) =

∫

Rd

f(ΠqΦ
τ (q, p))η(p) dp. (4)

This construction offers many advantages for the analysis of molecular processes. The
fundamental idea behind this formulation is, that the transfer operator T τ in (4) is a
linear operator although the ordinary differential equation (2) is (extremely) non-linear.
This linearization allows for a Galerkin discretization of T τ and thus for a numerical
approximation of eigenfunctions and eigenvalues of the discrete spectrum of T τ .

We take advantage of the fact, that the behavior of molecules can be well described
by its structurally related configurations (metastable conformations). Mathematically
speaking, a metastable conformation is a function C : Ω → [0, 1] which is nearly invariant
under the transfer operator T τ , i.e.

T τC(q) ≈ C(q). (5)

In the following we show how the metastable conformations can be computed via a dis-
cretization of the position space.

3 Discretization

In order to “resolve” or to identify the metastabilities we need a discretization of the
position space. At this stage, we define a decomposition of Ω, which we need in order
to employ our techniques. Let therefore {θi}Ni=1 be a set of basis function and Ωi =
supp(θi) ∀i = 1, ..., N . We say that the basis functions {θi}Ni=1 are a hard decomposition

of Ω, if

4

902
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i) Ωi is measurable and |Ωi| > 0 for i = 1, ..., N

ii) |Ωi ∩ Ωj | = 0 if i �= j

iii)
∑N

i=1 θi(q) = 1Ω, q ∈ Ω.

As we have already mentioned, the position space is high dimensional which prohibits
any usage of meshbased methods like finite elements. Thus we take advantage of meshfree
methods, more precisely we consider a Voronoi tessellation. We choose characteristic basis
functions {χi}Ni=1 with χi : Ω → {0, 1} defined by

χi(q) = 1Ωi
(q) :=

{

1 if q ∈ Ωi

0 otherwise
.

Obviously, these basis functions suit the requirements of a hard decomposition. Moreover
it is easy to see that the χi, ..., χN form a partition of unity, i.e.

N
∑

i=1

χi(q) = 1 and χi ≥ 0 ∀i.

In terms of the characteristic basis functions p(τ, χi(q), χj(q)) describes the transition
probability between the two sets Ωi and Ωj . In other words, it describes the ratio of
trajectories starting in q ∈ Ωi with Boltzmann distributed momenta p ∈ Rd and ending
in Ωj after timespan τ > 0.

Having now a discretization of Ω we can give the metastabilities a more precise meaning.
To do so, we aim at a set {C1, ..., Cnc

} such that
∑

nc

J=1CJ(q) = 1Ω ∀q ∈ Ω where
CJ : Ω → [0, 1] is a function. Then we can define each CJ as a linear combination of the
basis functions {χi}Ni=1. More precisely

CJ(q) =
N
∑

i=1

GiJχi(q), J = 1, ..., nc. (6)

Here and in the forthcoming, we use capital I, J, ... indices for numbering of the metastable
conformations. In order to employ a Galerkin discretization, we define
�g, f�π =

∫

Ω
f(q)g(q)π(q) dq and insert (6) into (5), s.th.

�T τ(

N
∑

i=1

GiJχi), χj�π ≈ �
N
∑

i=1

GiJχi, χj�π

N
∑

i=1

�T τGiJχi, χj�π ≈
N
∑

i=1

�GiJχi, χj�π. (7)
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Since 〈χi, χj〉π = δij〈χj, χj〉π we obtain

N
∑

i=1

GiJ〈χi, χj〉π = GjJ〈χj, χj〉π.

Thus (7) is equivalent to

N
∑

i=1

GiJ〈T τχi, χj〉π ≈ GiJ〈χj, χj〉π. (8)

Dividing both sides of (8) by 〈χj, χj〉π we can define

P τ

ji =
〈χj , T

τχi〉π
〈χj , χj〉π

=

∫

Ω

T τχi(q)
χj(q)

∫

Ω
χj(q)π(q)dq

dq

and we obtain for the coefficients GiJ

P τgJ ≈ gJ , (9)

where gJ = [G1J , G2J , . . . , GNJ ]
T . The stochastic matrix P τ describes the transition

probabilities between the basis functions.
We remark that the computation of the above integral is a challenging task, since the

underlying space is high dimensional. To overcome this, we employ strategies from particle
methods. In detail, we apply Markov chain Monte Carlo methods [4] in each Voronoi cell
to generate a local Boltzmann distribution πi(q) for each of the basis functions {χi}Ni=1,
i.e.

πi(q) =
χi(q)

∫

Ω
χi(q)π(q)dq

.

The sampled positions q are propagated by molecular dynamics according to Φτ with
randomized initial momenta. With these data we compute the entries of P τ . So far we
have not given any details for the matrix G in (6). Let us therefore point out the two
following aspects:

• The coefficients GiJ can then be computed as a linear combination

G = XA
of the eigenvectors X of P τ corresponding to eigenvalues close to one. For the nc

metastable conformations, T τ has a cluster of eigenvalues λi close to one, i.e. 1 =
λ1 > λ2 > . . . > λnc

= 1 − ε � λnc+1 . . . [9]. Therefore, single eigenvectors
are ill-conditioned, whereas the invariant subspace X = span(g1, . . . , gnc

) is well
conditioned. The matrix A ∈ Rnc×nc is some unknown non-singular transformation
matrix. Every matrix G obtained by such a transformation of eigenvectors satisfies
the invariance condition (9).

Among all possible transformation matrices A, we would like to find one that results
in vectors gJ with special properties.
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K. Fackeldey, S.Röblitz, O. Scharkoi and M. Weber

V (q)

Ω

V (q)

Ω
Figure 3: Left: A double welled potential (solid line), and the hard partition of the metastable configu-

rations (dashed line). Right: Same double welled potential with a soft partition of metastabilties.

• The matrix G plays an important role, since each entry giJ of G relates the ba-
sis function χi to the metastable conformation CJ . In the original work [2], the
conformations {C1, ..., Cnc

} are built as hard decomposition, such that the matrix
G has only the entries 0 and 1. However correspondingly, to the definition of the
hard decomposition, we can also define a decomposition soft if it meets the same
conditions as a hard decomposition except for the fact, that

ii*) |Ωi ∩ Ωj | ≥ 0 if i �= j,

i.e. we allow an overlap of the Ωi.
As a consequence the entries in the matrix G can take all values between 0 and 1 [3].
This allows us to assign for each basis function χi a certain degree of membership to
each conformation. In other words, the ith row of G shows how much the ith basis
function “contributes” to each metastability. In Figure 3 the difference between the
soft and hard decomposition is shown.

Since every soft clustering can always been relaxed to a hard one, our goal is to find a
soft partitioning of the position space. Thus, we have to find a non singular transformation
matrix A such that G describes a soft partitioning. The computational details will be
explained in the following section.

4 Clustering

The conditions on G discussed in the previous section can be summarized as follows:

(i) GiJ ≥ 0 ∀i ∈ {1, . . . , N}, J ∈ {1, . . . , nc} (positivity)

(ii)
∑nc

J=1GiJ = 1 ∀i ∈ {1, . . . , N} (partition of unity)

(iii) G = XA where P τX = XΛ, Λ = diag(λ1, . . . , λnc
), A non-singular (invariance)

Among the feasible transformation matrices we seek for a matrix A such that the resulting
membership vectors gJ are as characteristic as possible (|Ωi ∩ Ωj | ≈ 0).

7
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This can be achieved by maximizing the objective function

I(A;X, π) =
1

nc

nc∑
i=1

〈χi, χi〉π
〈χi, e〉π

≤ 1, (10)

where e denotes the vector with all entries equal to 1. One has to maximize a convex
function with linear constraints. The optimization problem can be solved by the Nelder-
Mead algorithm provided that a good initial guess for A is available. This starting guess
is obtained by the inner simplex algorithm as described in [10]. The maximization of (10)
subject to the constraints (i) to (iii) is called Robust Perron Cluster Analysis (PCCA+)
[3, 7].

Once the membership vectors gJ have been computed, one can compute a coarse
grained transition probability matrix Pc by projecting the original matrix P τ onto the
metastable conformations,

Pc = (G�wDG)−1G�wDP
τG, (11)

where wD denotes a diagonal matrix with the stationary distribution w of P (wTP τ =
wT )on the diagonal. The matrix Pc is not necessarily a stochastic matrix because it
can have negative entries if the membership vector gJ are far from being characteristic.
However, Pc has row sum one and is the correct propagator for densities restricted to the
metastable conformations [6]. In fact, det(Pc) is a measurement for the metastability of
the decomposition defined by G [11]. It holds

Pc = A−1ΛA, thus det(Pc) =

nc∏
i=1

λi.

It has been shown that for any G satisfying (i) and (ii), det(Pc) can be bounded from above
by

∏nc

i=1 λi [11]. Thus condition (iii) ensures a decomposition with maximal metastability.
Since the number of clusters nc is unknown in advance, it is recommended to run the

cluster algorithm several times with different input values for nc and to choose the “best”
solution for which I(A;X, π) is maximal.

5 Example

We demonstrate the application of our algorithm to the model system alanine dipep-
tide in vacuum with the mmff forcefield [5], Figure 4. For the discretization, we chose
N = 504 molecular configurations from a high temperature (1000 Kelvin) molecular dy-
namics trajectory as defining nodes of our Voronoi basis functions {χi}Ni=1. As distance
measure, we use the Euclidean distance in the space spanned by the four backbone torsion
angles ω1, . . . , ω4. We thus ignore variability in other degrees of freedom, which is justi-
fied by the fact that the torsion angles are the slow degrees of freedom and that is what
we are interested in. Within every basis function, a Markov chain Monte Carlo method

8
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Figure 4: Left: Spatial structure of alanin dipeptid. Right: Chemical structure of alanin dipeptide.
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Figure 5: Left: Image of the 504 × 504 transition probability matrix P (for ease of visualization, we

plotted the element-wise logarithm log(P ) instead of P ). Right: The first 10 eigenvalues of P . The first

5 eigenvalues form a cluster that is clearly separated from the rest of the spectrum.
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Figure 6: Left: The value of the objective function (10) for different numbers of clusters. The maximum
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to the decomposition into 5 clusters.
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Figure 7: Coloring of the defining nodes of the Voronoi basis functions. Bold markers indicate that the

basis function belongs to the cluster with probability larger than 0.8, whereas the other markers indicate

memberships smaller than 0.8. Left: Torsion angles 2 and 3. Right: Torsion angles 3 and 4. It can be

seen that the clusters identified by PCCA+ are isolated in at least one slow degree of freedom.

was applied to generate configurations distributed according to the partial densities πi(q).
These configurations were propagated according to the flow Φτ with τ = 39 femtoseconds.
With these data we computed the entries of the transition probability matrix P τ , which
are visualized in Fig. 5. P τ has a cluster of 5 eigenvalues close to one, and the value
of the objective function (10) is also maximal for nc = 5. Thus we computed the mem-
bership matrix G for nc = 5 clusters. The metastability of this decomposition amounts
to det(Pc) = 0.342. For comparison, we calculated the relaxation of G towards a hard
decomposition G̃, i.e.

G̃iJ =

{
1, if J = argmaxj Gij

0, else
.

The metastability of the hard decomposition amounts to only 0.264. This hard decompo-
sition, however, can be used to visualize the metastable conformations. Fig. 7 shows the
nodes of the basis functions colored according to the final decomposition.

6 Conclusions

Starting from a discretization of the position space Ω we employed two different ways
to describe the metastable configurations as a linear combination of eigenvectors. In the
first method we took coefficients 0 or 1, and named these metastable conformations hard.
In the second method we used soft metastable conformations by allowing the coefficients
to take values between 0 and 1. We have employed an example molecule and compared
the performance of the soft versus hard metastable conformations. In good agreement
with our theory, the soft decomposition leads to a larger metastability than the hard
decomposition.
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