13,742 research outputs found

    Prediction of protein-protein interactions using one-class classification methods and integrating diverse data

    Get PDF
    This research addresses the problem of prediction of protein-protein interactions (PPI) when integrating diverse kinds of biological information. This task has been commonly viewed as a binary classification problem (whether any two proteins do or do not interact) and several different machine learning techniques have been employed to solve this task. However the nature of the data creates two major problems which can affect results. These are firstly imbalanced class problems due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly the selection of negative examples can be based on some unreliable assumptions which could introduce some bias in the classification results. Here we propose the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilise examples of just one class to generate a predictive model which consequently is independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We have designed and carried out a performance evaluation study of several OCC methods for this task, and have found that the Parzen density estimation approach outperforms the rest. We also undertook a comparative performance evaluation between the Parzen OCC method and several conventional learning techniques, considering different scenarios, for example varying the number of negative examples used for training purposes. We found that the Parzen OCC method in general performs competitively with traditional approaches and in many situations outperforms them. Finally we evaluated the ability of the Parzen OCC approach to predict new potential PPI targets, and validated these results by searching for biological evidence in the literature

    Towards Data-Driven Autonomics in Data Centers

    Get PDF
    Continued reliance on human operators for managing data centers is a major impediment for them from ever reaching extreme dimensions. Large computer systems in general, and data centers in particular, will ultimately be managed using predictive computational and executable models obtained through data-science tools, and at that point, the intervention of humans will be limited to setting high-level goals and policies rather than performing low-level operations. Data-driven autonomics, where management and control are based on holistic predictive models that are built and updated using generated data, opens one possible path towards limiting the role of operators in data centers. In this paper, we present a data-science study of a public Google dataset collected in a 12K-node cluster with the goal of building and evaluating a predictive model for node failures. We use BigQuery, the big data SQL platform from the Google Cloud suite, to process massive amounts of data and generate a rich feature set characterizing machine state over time. We describe how an ensemble classifier can be built out of many Random Forest classifiers each trained on these features, to predict if machines will fail in a future 24-hour window. Our evaluation reveals that if we limit false positive rates to 5%, we can achieve true positive rates between 27% and 88% with precision varying between 50% and 72%. We discuss the practicality of including our predictive model as the central component of a data-driven autonomic manager and operating it on-line with live data streams (rather than off-line on data logs). All of the scripts used for BigQuery and classification analyses are publicly available from the authors' website.Comment: 12 pages, 6 figure

    Threshold Choice Methods: the Missing Link

    Full text link
    Many performance metrics have been introduced for the evaluation of classification performance, with different origins and niches of application: accuracy, macro-accuracy, area under the ROC curve, the ROC convex hull, the absolute error, and the Brier score (with its decomposition into refinement and calibration). One way of understanding the relation among some of these metrics is the use of variable operating conditions (either in the form of misclassification costs or class proportions). Thus, a metric may correspond to some expected loss over a range of operating conditions. One dimension for the analysis has been precisely the distribution we take for this range of operating conditions, leading to some important connections in the area of proper scoring rules. However, we show that there is another dimension which has not received attention in the analysis of performance metrics. This new dimension is given by the decision rule, which is typically implemented as a threshold choice method when using scoring models. In this paper, we explore many old and new threshold choice methods: fixed, score-uniform, score-driven, rate-driven and optimal, among others. By calculating the loss of these methods for a uniform range of operating conditions we get the 0-1 loss, the absolute error, the Brier score (mean squared error), the AUC and the refinement loss respectively. This provides a comprehensive view of performance metrics as well as a systematic approach to loss minimisation, namely: take a model, apply several threshold choice methods consistent with the information which is (and will be) available about the operating condition, and compare their expected losses. In order to assist in this procedure we also derive several connections between the aforementioned performance metrics, and we highlight the role of calibration in choosing the threshold choice method

    Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains

    Full text link
    There has been increased interest in devising learning techniques that combine unlabeled data with labeled data ? i.e. semi-supervised learning. However, to the best of our knowledge, no study has been performed across various techniques and different types and amounts of labeled and unlabeled data. Moreover, most of the published work on semi-supervised learning techniques assumes that the labeled and unlabeled data come from the same distribution. It is possible for the labeling process to be associated with a selection bias such that the distributions of data points in the labeled and unlabeled sets are different. Not correcting for such bias can result in biased function approximation with potentially poor performance. In this paper, we present an empirical study of various semi-supervised learning techniques on a variety of datasets. We attempt to answer various questions such as the effect of independence or relevance amongst features, the effect of the size of the labeled and unlabeled sets and the effect of noise. We also investigate the impact of sample-selection bias on the semi-supervised learning techniques under study and implement a bivariate probit technique particularly designed to correct for such bias
    corecore