
Towards Data-Driven Autonomics in Data Centers

Alina Sı̂rbu, Ozalp Babaoglu
Department of Computer Science and Engineering, University of Bologna

Mura Anteo Zamboni 7, 40126 Bologna, Italy
Email: alina.sirbu@unibo.it, ozalp.babaoglu@unibo.it

Abstract—Continued reliance on human operators for man-
aging data centers is a major impediment for them from
ever reaching extreme dimensions. Large computer systems
in general, and data centers in particular, will ultimately be
managed using predictive computational and executable models
obtained through data-science tools, and at that point, the
intervention of humans will be limited to setting high-level
goals and policies rather than performing low-level operations.
Data-driven autonomics, where management and control are
based on holistic predictive models that are built and updated
using generated data, opens one possible path towards limiting
the role of operators in data centers. In this paper, we present
a data-science study of a public Google dataset collected in a
12K-node cluster with the goal of building and evaluating a
predictive model for node failures. We use BigQuery, the big
data SQL platform from the Google Cloud suite, to process
massive amounts of data and generate a rich feature set
characterizing machine state over time. We describe how an
ensemble classifier can be built out of many Random Forest
classifiers each trained on these features, to predict if machines
will fail in a future 24-hour window. Our evaluation reveals
that if we limit false positive rates to 5%, we can achieve true
positive rates between 27% and 88% with precision varying
between 50% and 72%. We discuss the practicality of including
our predictive model as the central component of a data-driven
autonomic manager and operating it on-line with live data
streams (rather than off-line on data logs). All of the scripts
used for BigQuery and classification analyses are publicly
available from the authors’ website.

Keywords-Data science; predictive analytics; Google cluster
trace; log data analysis; failure prediction; machine learning
classification; ensemble classifier; random forest; BigQuery

I. INTRODUCTION

Modern data centers are the engines of the Internet that
run e-commerce sites, cloud-based services accessed from
mobile devices and power the social networks utilized each
day by hundreds of millions of users. Given the pervasive-
ness of these services in many aspects of our daily lives,
continued availability of data centers is critical. And when
continued availability is not possible, service degradations
and outages need to be foreseen in a timely manner so
as to minimize their impact on users. For the most part,
current automated data center management tools are limited
to low-level infrastructure provisioning, resource allocation,
scheduling or monitoring tasks with no predictive capabili-
ties. This leaves the brunt of the problem in detecting and
resolving undesired behaviors to armies of operators who

continuously monitor streams of data being displayed on
monitors. Even at the highly optimistic rate of 26,000 servers
managed per staffer1, this situation is not sustainable if data
centers are ever to reach exascale dimensions. Applying
traditional autonomic computing techniques to large data
centers is problematic since their complex system character-
istics prohibit building a “cause-effect” system model that is
essential for closing the control loop. Furthermore, current
autonomic computing technologies are reactive and try to
steer the system back to desired states only after undesirable
states are actually entered — they lack predictive capabilities
to anticipate undesirable states in advance so that proactive
actions can be taken to avoid them in the first place.

If data centers are the engines of the Internet, then data is
their fuel and exhaust. Data centers generate and store vast
amounts of data in the form of logs corresponding to various
events and errors in the course of their operation. When
these computing infrastructure logs are augmented with
numerous other internal and external data channels including
power supply, cooling, management actions such as software
updates, server additions/removal, configuration parameter
changes, network topology modifications, or operator actions
to modify electrical wiring or change the physical locations
of racks/server/storage devices, data centers become ripe
to benefit from data science. The grand challenge is to
exploit the toolset of modern data science and develop a new
generation of autonomics that is data-driven, predictive and
proactive based on holistic models that capture a data centre
as an ecosystem including not only the computer system
as such, but also its physical as well as its socio-political
environment.

In this paper we present the results of an initial study
towards building predictive models for node failures in data
centers. The study is based on a recent Google dataset
containing workload and scheduler events emitted by the
Borg cluster management system [1] in a cluster of over
12,000 nodes during a one-month period [2], [3]. We em-
ployed BigQuery [4], a big data tool from the Google Cloud
Platform that allows running SQL-like queries on massive
data, to perform an exploratory feature analysis. This step
generated a large number of features at various levels of

1Delfina Eberly, Director of Data Center Operations at Facebook, speak-
ing on “Operations at Scale” at the 7x24 Exchange 2013 Fall Conference.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80265647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aggregation suitable for use in a machine learning classifier.
The use of BigQuery has allowed us to complete the analysis
for large amounts of data (table sizes up to 12TB containing
over 100 billion rows) in reasonable amounts of time.

For the classification study, we employed an ensemble
that combines the output of multiple Random Forests (RF)
classifiers, which themselves are ensembles of Decision
Trees. RF were employed due to their proven suitability in
situations were the number of features is large [5] and the
classes are “unbalanced” [6] such that one of the classes
consists mainly of “rare events” that occur with very low
frequency. Although individual RF were better than other
classifiers that were considered in our initial tests, they still
exhibited limited performance, which prompted us to pursue
an ensemble approach. While individual trees in RF are
based on subsets of features, we used a combination of
bagging and data subsampling to build the RF ensemble
and tailor the methodology to this particular dataset. Our
ensemble classifier was tested on several days from the trace
data, resulting in very good performance on some days (up
to 88% true positive rate, TPR, and 5% false positive rate,
FPR), and modest performance on other days (minimum of
27% TPR at the same 5% FPR). Precision levels in all cases
remained between 50% and 72%. We should note that these
results are comparable to other failure prediction studies in
the field.

The contributions of our work are severalfold. First, we
advocate that modern data centers can be scaled to extreme
dimensions only by eliminating reliance on human operators
by adopting a new generation of autonomics that is data-
driven and based on holistic predictive models. Towards this
goal, we provide a failure prediction analysis for a dataset
that has been studied extensively in the literature from other
perspectives. The model we develop has very promising
predictive power and has the potential to form the basis of a
data-driven autonomic manager for data centers. Secondly,
we propose an ensemble classification methodology tailored
to this particular problem where subsampling is combined
with bagging and precision-weighted voting to maximize
performance. Thirdly, we provide one of the first exam-
ples of BigQuery usage in the literature with quantitative
evaluation of running times as a function of data size. All
of the scripts used for BigQuery and classification analysis
are publicly available from our website [7] under the GNU
General Public License.

The rest of this paper is organized as follows. The next
section describes the process of building features from the
trace data. Section III describes our classification approach
while our prediction results are presented in Section IV.
Related work is discussed in Section V. In Section VI we
discuss the issues surrounding the construction of a data-
driven autonomic controller based on our predictive model
and argue its practicality. Section VII concludes the paper.

II. BUILDING THE FEATURE SET WITH BIGQUERY

The workload trace published by Google contains several
tables monitoring the status of the machines, jobs and tasks
during a period of approximately 29 days for a cluster
of 12,453 machines. This includes task events (over 100
million records, 17GB uncompressed), which follow the
state evolution for each task, and task usage logs (over
1 billion records, 178GB uncompressed), which report the
amount of resources per task at approximately 5 minute
intervals. We have used the data to compute the overall load
and status of different cluster nodes at 5 minute intervals.
This resulted in a time series for each machine and feature
that spans the entire trace (periods when the machine was
“up”). We then proceeded to obtain several features by
aggregating measures in the original data. Due to the size of
the dataset, this aggregation analysis was performed using
BigQuery on the trace data directly from Google Cloud
Storage. We used the bq command line tool for the entire
analysis, and our scripts are available online through our
Web site [7].

From task events, we obtained several time series for each
machine with a time resolution of 5 minutes. A total of 7
features were extracted, which count the number of tasks
currently running, the number of tasks that have started
in the last 5 minutes and those that have finished with
different exit statuses — evicted, failed, finished normally,
killed or lost. From task usage data, we obtained 5 additional
features (again at 5-minute intervals) measuring the load at
machine level in terms of: CPU, memory, disk time, cycles
per instruction (CPI) and memory accesses per instruction
(MAI). This resulted in a total of 12 basic features that were
extracted. For each feature, at each time step we consider
the previous 6 time windows (corresponding to the machine
status during the last 30 minutes) obtaining 72 features in
total (12 basic features × 6 time windows).

The procedure for obtaining the basic features was ex-
tremely fast on the BigQuery platform. For task counts, we
started with constructing a table of running tasks, where
each row corresponds to one task and includes its start time,
end time, end status and the machine it was running on.
Starting from this table, we could obtain the time series for
each feature for each machine, requiring between 139 and
939 seconds on BigQuery per feature (one separate table
per feature was obtained). The features related to machine
load were computed by summing over all tasks running on
a machine in each time window, requiring between 3585
and 9096 seconds on BigQuery per feature. The increased
execution time is due to the increased table sizes (over
1 billion rows). We then performed a JOIN of all above
tables to combine the basic features into a single table with
104,197,215 rows (occupying 7GB). For this analysis, our
experience allows us to judge BigQuery as being extremely
fast; an equivalent computation would have taken months to

Aggregation Average, SD, CV Correlation
1h 166 (all features) 45(6.5)

12h 864 (all features) 258.8(89.1)
24h 284.6(86.6) 395.6(78.9)
48h 593.6(399.2) 987.2(590)
72h 726.6(411.5) 1055.47(265.23)
96h 739.4(319.4) 1489.2(805.9)

Table I: Running times required by BigQuery for obtaining
features aggregated over different time windows, for two
aggregation types: computing averages, standard deviation
(SD) and coefficient of variation (CV) versus computing
correlations. For 1h and 12h windows, average, SD and
CV were computed for all features in a single query. For
all other cases, the mean (and standard deviation) of the
required times per feature are shown.

perform on a regular PC.
A second level of aggregation meant looking at features

over longer time windows rather than just the last 5 minutes.
At each time step, 3 different statistics — averages, standard
deviations and coefficients of variation — were computed
for each basic feature obtained at the previous step. This
was motivated by the suspicion that not only feature values
but also their deviation from the mean could be important
in understanding system behavior. Six different running
windows of sizes 1, 12, 24, 48, 72 and 96 hours were used to
capture behavior at various time resolutions. This resulted
in 216 additional features (3 statistics × 12 features × 6
window sizes).

In order to generate these aggregated features, a set of
intermediate tables were used. For each time point, these
tables consisted of the entire set of data points to be
averaged. For instance, for 1-hour averages, the table would
contain a set of 6 values for each feature and for each time
point, showing the evolution of the system over the past
hour. While generating these tables was not time consuming
(requiring between 197 and 960 seconds), their sizes were
quite impressive: ranging from 143 GB (over 1 billion rows)
for 1 hour up to 12.5 TB (over 100 billion rows) in the case
of 96-hour window. Processing these tables to obtain the
aggregated features of interest required significant resources
and would not have been possible without the BigQuery
platform. Even then, direct queries using a single GROUP
BY operation to obtain all 216 features was not possible,
requiring only one basic feature to be handled at a time and
combining the results into a single table at the end. Table I
shows statistics over the time required to obtain one feature
for the different window sizes.

Although independent feature values are important, an-
other criterion that could be important for prediction is
the relations that exist between different measures. Corre-
lation between features is one such measure, with different
correlation values indicating changes in system behavior.
Hence we introduced a third level of aggregation of the

data by computing correlations between a chosen set of
feature pairs, again over various window sizes (1 to 96
hours as before). We chose 7 features to analyze: number of
running, started and failed jobs together with CPU, memory,
disk time and CPI. By computing correlations between all
possible pairings of the 7 features, we obtained a total of 21
correlation values for each window size. This introduces 126
additional features to our dataset. The BigQuery analysis
started from the same intermediate tables as before and
computed correlations for one feature pair at a time. As
can be seen in Table I, this step was more time consuming,
requiring greater time than the previous aggregation step, yet
still remains manageable considering the size of the data.
The amount of data processed for these queries ranged from
49.6GB (per feature pair for 1-hour windows) to 4.33TB
(per feature pair for 96-hour windows), resulting in a higher
processing cost (5 USD per TB processed). Yet again, a
similar analysis would not have been possible without the
BigQuery platform.

The Google trace also reports machine events. These are
scheduler events corresponding to machines being added or
removed from the pool of resources. Of particular interest
are REMOVE events, which can be due to two causes: ma-
chine failures or machine software updates. The goal of this
work is to predict REMOVE events due to machine failures,
so the two causes have to be distinguished. Prompted by our
discussions, publishers of the Google trace investigated the
best way to perform this distinction and suggested to look
at the length of time that machines remain down — the
time from the REMOVE event of interest to the next ADD
event for the same machine. If this “down time” is large,
then we can assume that the REMOVE event was due to a
machine failure, while if it is small, the machine was most
likely removed to perform a software update. To ensure that
an event considered to be a failure is indeed a real failure,
we used a relatively-long “down time” threshold of 2 hours,
which is greater than the time required for a typical software
update. Based on this threshold, out of a total of 8,957
REMOVE events, 2,298 were considered failures, and were
the target of our predictive study. For the rest of the events,
for which we cannot be sure of the cause, the data points
in the preceding 24-hour window were removed completely
from the dataset. An alternative would have been considering
them part of the SAFE class, however this might not be true
for some of the points. Thus, removing them completely
ensures that all data labeled as SAFE are in fact SAFE.

To the above features based mostly on load measures,
we added two new features: the up time for each machine
(time since the last corresponding ADD event) and number
of REMOVE events for the entire cluster within the last hour.
This resulted in a total of 416 features for 104,197,215 data
points (almost 300GB of processed data). Figure 1 displays
the time series for 4 selected features (and the REMOVE
events) at one typical machine.

Figure 1: Four time series (4 out of 416 features) for one machine in the system. The features shown are: CPU for the last
time window, CPU averages over 12 hours, CPU coefficient of variation for the last 12 hours and correlation between CPU
and number of running jobs in the last 12 hours. Grey vertical lines indicate times of REMOVE events, some followed by
gaps during which the machine was unavailable. The large gap from ∼250 hours to ∼370 hours is an example of a long
machine downtime, following a series of multiple failures (cluster of grey vertical lines around 250 hours). In this case, the
machine probably needed more extensive investigation and repair before being inserted back in the scheduler pool.

III. CLASSIFICATION APPROACH

The features obtained in the previous section were used
for classification with the Random Forest (RF) classifier.
The data points were separated into two classes: SAFE
(negatives) and FAIL (positives). To do this, for each data
point (corresponding to one machine at a certain time
point) we computed time to remove as the time to the next
REMOVE event. Then, all points with time to remove less
than 24 hours were assigned to the class FAIL while all
others were assigned to the class SAFE. We extracted all
the FAIL data points corresponding to real failures (108,365
data points) together with a subset of the SAFE class,
corresponding to 0.5% of the total by random subsampling
(544,985 points after subsampling). We used this procedure
to deal with the fact that the SAFE class is much larger than
the FAIL class and classifiers have difficulty learning patterns
from very imbalanced datasets. Subsampling is one way of
reducing the extent of this imbalance [8]. Even after this
subsampling procedure, negatives are about five times the
number of positives. These 653,350 data points (SAFE plus
FAIL) formed the basis of our predictive study.

Given the large number of features, some might be
more useful than others, hence we explored two types of
feature selection mechanisms. One was principal component
analysis, which uses the original features to build a set of
principal components — additional features that account
for most of the variability in the data. Then one can use

only the top principal components for classification, since
those should contain the most important information. We
trained classifiers with an increasing number of principal
components, however the performance obtained was not
better than using the original features. A second mechanism
was to filter the original features based on their correlation
to the time to the next failure event (time to remove above).
Correlations were in the interval [−0.3, 0.45], and we used
only those features with absolute correlation larger than a
threshold. We found that the best performance was obtained
with a null threshold, which means again using all features.
Hence, our attempts to reduce the feature set did not produce
better results that the RF trained directly on the original
features. One reason for this may be the fact that the RF itself
performs feature selection when training the Decision Trees.
It appears that the RF mechanism performs better in this
case than correlation-based filtering or principal component
analysis.

To evaluate the performance of our approach, we em-
ployed cross validation. Given the procedure we used to
define the two classes, there are multiple data points cor-
responding to the same failure (data over 24 hours with 5
minutes resolution). Since some of these data points are very
similar, choosing the train and test data cannot be done by
selecting random subsets. While random selection may give
extremely good prediction results, it is not realistic since we
would be using test data which is too similar to the training

Benchmark*1*

Training*data* Test*data*

Benchmark*2*

Benchmark*15*
…*

Trace*days*

Figure 2: Cross validation approach: forward-in-time testing.
Ten days were used for training and one day for testing. A set
of 15 benchmarks (train/test pairs) were obtained by sliding
the train/test window over the 29-day trace.

data. This is why we opted for a time-based separation of
train and test data. We considered basing the training on
data over a 10-day window, followed by testing based on
data over the next day with no overlap with the training
data. Hence, the test day started 24 hours after the last
training data point. The first two days were omitted in order
to decrease the effect on aggregated features. In this manner,
fifteen train/test pairs were obtained and used as benchmarks
to evaluate our analysis (see Figure 2). This forward-in-
time cross validation procedure ensures that classification
performance is realistic and not an artifact of the structure
of the data. Also, it mimics the way failure prediction would
be applied in a live data center, where every day a model
could be trained on past data to predict future failures.

Given that many points from the FAIL class are very
similar, which is not the case for the SAFE class due to
initial subsampling, the information in the SAFE class is still
overwhelmingly large. This prompted us to further subsam-
ple the negative class in order to obtain the training data.
This was performed in such a way that the ratio between
SAFE and FAIL data points is equal to a parameter fsafe. We
varied this parameter with the values {0.25, 0.5, 1, 2, 3, 4}
while using all of the data points from the positive class so
as not to miss any useful information. This applied only for
training data: for testing we always used all data from both
the negative and positive classes (out of the base dataset of
653,350 points). We also used RF of different sizes, with
the number of Decision Trees varying from 2 to 15 with a
step of 1 (resulting in 14 different values).

As we will discuss in the following section, the perfor-
mance of the individual classifiers, while better than random,
was judged to be not satisfactory. This is why we opted
for an ensemble method, which builds a series of classifiers
and then selects and combines them to provide the final
classification. Ensembles can enhance the power of low
performing individual classifiers [5], especially if these are
diverse [9], [10]: if they give false answers on different data
points (independent errors), then combining their knowledge
can improve accuracy. To create diverse classifiers, one can
vary the model parameters but also train them with different
data (known as the bagging method [5]). Bagging matches

very well with subsampling to overcome the rare events
problem, and in fact it has been shown to be effective for
the class-imbalance problem [8]. Hence, we adopt a similar
approach to build our individual classifiers. Every time a
new classifier is trained, a new training dataset is built by
considering all the data points in the positive class and a
random subset of the negative class. As described earlier,
the size of this subset is defined by the fsafe parameter.
By varying the value of fsafe and number of trees in the
RF algorithm, we created diverse classifiers. The following
algorithm details the procedure used to build the individual
classifiers in the ensemble.

Require: train pos, train neg, Shuffle(), Train()
fsafe ← {0.25, 0.5, 1, 2, 3, 4}
tree count ← {2..15}
classifiers ← {}
start ← 0
for all fs ∈ fsafe do

for all tc ∈ tree count do
end ← start + fs ∗ |train pos|
if end ≥ |train neg| then

start ← 0
end ← start + fs ∗ |train pos|
Shuffle(train neg)

end if
train data ← train pos + train neg[start: end]
classifier ← Train(train data, tc)
append(classifiers, classifier)
start ← end

end for
end for

We repeated this procedure 5 times, resulting in 5 classi-
fiers for each combination of the parameters fsafe and RF
size. This resulted in a total of 420 RF in the ensemble (5
repetitions × 6 fsafe values × 14 RF sizes).

Once the pool of classifiers is obtained, a combining
strategy has to be used. Most existing approaches use the
majority vote rule — each classifier votes on the class
and the majority class becomes the final decision [5].
Alternatively, a weighted vote can be used, and we opted
for precision-weighted voting. For most existing methods,
weights correspond to the accuracy of each classifier on
training data [11]. In our case, performance on training
data is close to perfect and accuracy is generally high,
which is why we use precision on a subset of the test
data. Specifically, we divide the test data into two halves:
an individual test data set and an ensemble test data set.
The former is used to evaluate the precision of individual
classifiers and obtain a weight for their vote. The latter
provides the final evaluation of the ensemble. All data
corresponding to the test day was used, with no subsampling.
Table II shows the number of data points used for each
benchmark for training and testing. While the parameter
fsafe controlled the ratio SAFE/FAIL during training, FAIL
instances were much less frequent during testing, varying

Train Individual Test Ensemble Test
Benchmark FAIL FAIL SAFE FAIL SAFE

1 41485 2055 9609 2055 9610
2 41005 2010 9408 2011 9408
3 41592 1638 9606 1638 9606
4 42347 1770 9597 1770 9598
5 42958 1909 9589 1909 9589
6 42862 1999 9913 2000 9914
7 41984 1787 9821 1787 9822
8 39953 1520 10424 1520 10424
9 37719 1665 10007 1666 10008

10 36818 1582 9462 1583 9463
11 35431 1999 9302 1999 9302
12 35978 3786 10409 3787 10410
13 35862 2114 9575 2114 9575
14 39426 1449 9609 1450 9610
15 40377 1284 9783 1285 9784

Table II: Size of training and testing datasets. For training
data, the number of SAFE data points is the number of FAIL
multiplied by the fsafe parameter at each run.

between 13% and 36% of the number of SAFE instances.
To perform precision-weighted voting, we first applied

each RF i obtained above to the individual test data and
computed their precision pi as the fraction of points labeled
FAIL that were actually failures. In other words, precision
is the probability that an instance labeled as a failure is
actually a real failure, which is why we decided to use this
as a weight. Then we applied each RF to the ensemble test
data. For each data point j in this set, each RF provided
a classification oji (either 0 or 1 corresponding to SAFE or
FAIL, respectively). The classification of the ensemble (the
whole set of RF) was then computed as a continuous score

sj =
∑
i

ojipi (1)

by summing individual answers weighted by their precision.
Finally, these were normalized by the highest score in the
data

s′j =
sj

maxj(sj)
(2)

The resulting score s′j is proportional to the likelihood that
a data point is in the FAIL class — the higher the score,
the more certain we are that we have an actual failure. The
following algorithm outlines the procedure of obtaining the
final ensemble classification scores.

Require: classifiers, individual test, ensemble test
Require: Precision(), Classify()

classification scores ← {}
weights ← {}
for all c ∈ classifiers do

w ← Precision(c, individual test)
weights[c] ← w

end for
for all d ∈ ensemble test do

score ← 0
for all c ∈ classifiers do

score ← score+weights[c]∗Classify(c, d)
end for
append(classification scores, score)

end for
max ← Max(classification scores)
for all s ∈ classification scores do

s ← s/max
end for

It assumes that the set of classifiers is available (classi-
fiers), together with the two test data sets (individual test
and ensemble test) and procedures to compute precision of
a classifier on a dataset (Precision()) and to apply a classifier
to a data point (Classify() which returns 0 for SAFE and 1
for FAIL).

IV. CLASSIFICATION RESULTS

The ensemble classifier was applied to all 15 benchmark
datasets. Training was done on an iMac with 3.06GHz Intel
Core 2 Duo processor and 8GB of 1067MHz DDR3 memory
running OSX 10.9.3. Training of the entire ensemble took
between 7 and 9 hours for each benchmark dataset.

Given that the result of the classification is a continuous
score (Equation 2), and not a discrete label, evaluation was
based on the Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves. A class can be obtained for a
data point j from the score s′j by using a threshold s∗. A
data point is considered to be in the FAIL class if s′j ≥ s∗.
The smaller s∗, the more instances are classified as failures.
Thus, by decreasing s∗ the number of true positives grows
but so do the false positives. Similarly, at different threshold
values, a certain precision is obtained. The ROC curve plots
the True Positive Rate (TPR) versus the False Positive Rate
(FPR) of the classifier as the threshold is varied. Similarly,
The PR curve displays the precision versus recall (equal to
TPR or Sensitivity). It is common to evaluate a classifier
by computing the area under ROC (AUROC) and area
under PR (AUPR) curves, which can range from 0 to 1.

Figure 3: AUROC and AUPR on ensemble test data for all
benchmarks.

(a) Worst case (Benchmark 4)

(b) Best case (Benchmark 14)

Figure 4: ROC and PR curves for worst and best performance across the 15 benchmarks (4 and 14, respectively). The
vertical lines correspond to FPR of 1%, 5% and 10%. Note that parameter fsafe controls the ratio of SAFE to FAIL data in
the training datasets.

AUROC values greater than 0.5 correspond to classifiers that
perform better than random guesses, while AUPR represents
an average classification precision, so, again, the higher the
better. AUROC and AUPR do not depend on the relative
distribution of the two classes, so they are particularly
suitable for class-imbalance problems such as the one at
hand.

Figure 3 shows AUROC and AUPR values obtained for
all datasets, evaluated on the ensemble test data. For all
benchmarks, AUROC values are very good, over 0.75 and up
to 0.97. AUPR ranges between 0.38 and 0.87. Performance
appears to increase, especially in terms of precision, towards
the end of the trace. Lower performance that is observed
for the first two benchmarks could be due to the fact that

some of the aggregated features (those over 3 or 4 days) are
computed with incomplete data at the beginning.

To evaluate the effect of the different parameters and
the ensemble approach, Figure 4 displays the ROC and PR
curves for the benchmarks that result in the worst and best
results (4 and 14, respectively). Performance of the individ-
ual classifiers in the ensemble are also displayed (as points
in the ROC/PR space since their answer is categorical). We
can see that individual classifiers result in very low FPR
which is very important in predicting failures. Yet, in many
cases, the TPR values are also very low. This means that
most test data is classified as SAFE and very few failures
are actually identified.

TPR appears to increase when the fsafe parameter de-

…"

Time"
REMOVE"event"

(failure)"SAFE"data" FAIL"data"

1"hour"

MisclassificaBon""
has"higher"impact"

MisclassificaBon""
has"higher"impact"

MisclassificaBon""
has"lower"impact"

Figure 5: Representation of the time axis for one machine.
The SAFE and FAIL labels are assigned to time points
based on the time to the next failure. Misclassification has
different impacts depending on its position on the time axis.
In particular, if we misclassify a data point close to the
transition from SAFE to FAIL, the impact is lower than if
we misclassify far from the boundary. The latter situation
would mean flagging a failure even if no failure will appear
for a long time, or marking a machine as SAFE when failure
is imminent.

creases, but at the expense of the FPR and Precision. The
plots show quantitatively the clear dependence between the
three plotted measures and fsafe values. As the amount
of SAFE training data decreases, the classifiers become
less stringent and can identify more failures, which is an
important result for this class-imbalance problem. Also, the
plot shows clearly that individual classifiers obtained with
different values for fsafe are diverse, which is critical for
obtaining good ensemble performance.

In general, the points corresponding to the individual
classifiers are below the ROC and PR curves describing the
performance of the ensemble. This proves that the ensemble
method is better than the individual classifiers for this
problem, which can be also due to their diversity. Some
exceptions do appear (points above the solid lines), however
for very low TPR (under 0.2) so in an area of the ROC/PR
space that is not interesting from our point of view. We are
interested in maximizing the TPR while keeping the FPR at
bay. Specifically, the FPR should never grow beyond 5%,
which means few false alarms. At this threshold, the two
examples from Figure 4 display TPR values of 0.272 (worst
case) and 0.886 (best case), corresponding to precision
values of 0.502 and 0.728 respectively. This is much better
than individual classifiers at this level, both in terms of
precision and TPR. For failure prediction, this means that
between 27.2% and 88.6% of failures are identified as such,
while from all instances labeled as failures, between 50.2%
and 72.8% are actual failures.

In order to analyze the implications of the obtained
results in more detail, the relation between the classifier
label and the exact time until the next REMOVE event was
studied for the data points. This is important because we
originally assigned the label SAFE to all data points that are
more than 24 hours away from a failure. According to this
classification, a machine would be considered to be in SAFE

state whether it fails in 2 weeks or in 2 days. Similarly, it is
considered to be in FAIL state whether it fails in 23 hours or
in 10 minutes. Obviously these are very different situations,
and the impact of misclassification varies depending on the
time to the next failure. Figure 5 displays this graphically.
As the time to the next failure decreases, a SAFE data point
misclassified as FAIL counts less as a misclassification, since
failure is actually approaching. Similarly, a FAIL data point
labeled as SAFE has a higher negative impact when it is
close to the point of failure.

We would like to verify whether our classifier assigns
correct and incorrect labels uniformly within each class,
irrespective of the real time to the next failure. For this,
Figure 6 shows the distribution of the time-to-the-next-
failure, in the form of boxplots, for true positives (TP),
false negatives (FN), true negatives (TN) and false positives
(FP), again for the worst and best cases (benchmarks 4 and
14, respectively). We look at results obtained at 5% FPR

(a) Benchmark 4, Positive class (b) Benchmark 4, Negative class

(c) Benchmark 14, Positive class (d) Benchmark 14, Negative class

Figure 6: Distribution of time to the next machine REMOVE
for data points classified, divided into True Positive (TP),
False Negative (FN), True Negative (TN) and False Positive
(FP). The worst and best performance (benchmarks 4 and 14,
respectively) out of the 15 runs are shown. Actual numbers
of instances in each class are shown in parentheses on the
horizontal axis.

values. A good result would be if misclassified positives
are further in time from the point of failure compared to
correctly classified failures. And misclassified negatives are
closer to the failure point compared to correctly classified
negatives.

All positive instances, which are data points correspond-
ing to real failures, are shown in the left panels (Figure
6a and 6c). These are divided into TP (failures correctly
identified by the classifier) and FN (failures missed by the
classifier). All data points have a time to the next REMOVE
event between 0 and 24 hours, due to the way the positive
class was defined. If the classifier was independent of the
time to the next failure, the two distributions shown for TP
and FN would be very similar. However, the plots show
that TP have, on average, lower times until the next event,
compared to FN. This means that many of the positive data
points that are misclassified are further in time from the
actual failure moment compared to those correctly identified.
This is good news, because it suggests that although data
points are not recognized as imminent failure situations
when there is still some time left before the actual fail-
ure, correct classification may occur as the failure moment
approaches. In fact, if we compute the fraction of failure
events that are flagged at least once in the preceding 24 hour
window, we obtain values larger than the TPR computed
at the data-point level, especially when prediction power is
lowest (52.5% vs. 27.2% for benchmark 4 and 88.7% vs.
88.6% for benchmark 14).

Negative (SAFE) instances — data points that do not
precede a REMOVE event by less than 24 hours — can be
divided into two classes: those for which there is a REMOVE
due to a real failure before the end of the trace and those
for which there is none. For the latter, we have no means to
estimate the time to the next failure event. So Figures 6b and
6d show the time to the next REMOVE only for the former,
i.e., those machines which will fail before the end of the
trace. This is only a small fraction of the entire SAFE test
data, especially for the benchmark with best performance,
because it is only three days before the trace ends. However
it still provides some indication on the time to the next
failure of the negative class, divided into FP (negatives that
are labeled as failures) and TN (negatives correctly labeled
SAFE). As the figure shows, on average, times to the next
failure are lower for FP compared to TN. This is again a
good result because it means that many times the classifier
gives false alarms when a failure is approaching, even if it
is not strictly in the next 24 hours.

V. RELATED WORK

The publication of the Google trace data has triggered
a flurry of activity within the community including several
with goals that are related to ours. Some of these provide
general characterization and statistics about the workload
and node state for the cluster [12], [13], [14] and identify

high levels of heterogeneity and dynamism in the system,
especially when compared to grid workloads [15]. User
profiles [16] and task usage shapes [17] have also been
characterized for this cluster. Other studies have applied
clustering techniques for workload characterization, either
in terms of jobs and resources [18], [19] or placement
constraints [20], with the aim to synthesize new traces. A
different type of usage is for validation of various workload
management algorithms. Examples are [21] where the trace
is used to evaluate consolidation strategies, [22], [23] where
over-committing (overbooking) is validated, [24] who take
heterogeneity into account to perform provisioning or [25]
investigating checkpointing algorithms.

System modeling and prediction studies using the Google
trace data are far fewer than those performing characteri-
zation or validation. An early attempt at system modeling
based on this trace [26] validates an event-based simulator
using workload parameters extracted from the data, with
good performance in simulating job status and overall sys-
tem load. Host load prediction using a Bayesian classifier
was analyzed in [27]. Using CPU and RAM history, the
mean load in a future time window is predicted, by dividing
possible load levels into 50 discrete states. Here we perform
prediction of machine failures for this cluster, which has not
been attempted to date, to our knowledge.

Failure prediction has been an active topic for many years,
with a comprehensive review presented in [28]. This work
summarizes several methods of failure prediction in single
machines, clusters, application servers, file systems, hard
drives, email servers and clients, etc., dividing them into
failure tracking, symptom monitoring or error reporting. The
method introduced here falls into the symptom monitoring
category, however elements of failure tracking and error
reporting are also present through features like number of
recent failures and job failure events.

More recent studies concentrate on larger scale distributed
systems such as HPC or clouds. For failure tracking meth-
ods, an important resource is the failure trace archive [29],
a repository for failure logs and an associated toolkit that
can enable integrated characterization of failures, such as
distributions of inter-event times. Job failure in a cloud
setting has been analyzed in [30]. The naive Bayes classifier
is used to obtain a probability of failure based on the job
type and host name. This is applied on traces from Amazon
EC2 running several scientific applications. The method
reaches different performances on jobs from three different
application settings, with FNs of 4%, 12% and 16% of total
data points and corresponding FPs of 0%, 4% and 10% of
total data points. This corresponds approximately to FPR of
0%, 5.7% and 16.3%, and TPR of 86.6%, 61.2% and 58.9%.
The performance we obtained with our method is within a
similar range for most benchmarks, although we never reach
their best performance. However, we are predicting machine
and not job failures.

A comparison of different classification tools for failure
prediction in an IBM Blue Gene/L cluster is given in [31].
In this work, they analyze Reliability, Availability and Ser-
viceability (RAS) events using SVMs, neural networks, rule
based classifiers and a custom nearest neighbor algorithm,
trying to predict whether different event categories will
appear. The custom nearest neighbor algorithm outperforms
the others reaching 50% precision and 80% TPR. A similar
analysis was also performed for a Blue Gene/Q cluster [32].
The best performance was again by the nearest neighbor
classifier (10% FPR, 20% TPR). They never evaluated the
Random Forest or ensemble algorithms.

In [33] an anomaly detection algorithm for cloud com-
puting was introduced. It employs Principal Component
Analysis and selects the most relevant principal components
for each failure type. They find that higher order components
are better correlated with errors. Using threshold on these
principal components, they identify data points outside the
normal range. They study four types of failures: CPU-
related, memory-related, disk-related and network-related
faults, in a controlled in-house system with fault injection
and obtain very high performance, 91.4% TPR at 3.7% FPR.
On a production trace (the same Google trace we are using)
they predict task failures at 81.5% TPR and 27% FPR (at 5%
FPR, TPR is down to about 40%). In our case, we studied
the same trace but looking at machine failures as opposed
to task failures, and obtained TRP values between 27% and
88% at 5% FPR.

All above-mentioned failure prediction studies concentrate
on types of failures or systems different from ours and obtain
variable results. In all cases, our predictions compare well
with prior studies, with our best result being better than
most.

VI. DISCUSSION

Here we consider the possibility of including our predic-
tive model in a data-driven autonomic controller for use in
data centers. In such a scenario, both model building and
model updating would happen on-line on data that is being
streamed from various sources. From a technical point of
view, on-line use would require a few changes to our model
workflow.

To build the model, all features have to be computed on-
line. Log data can be collected in a BigQuery table using the
streaming API. As data is being streamed, features have to be
computed at 5 minute intervals. Both basic and aggregated
features (averages, standard deviations, coefficients of varia-
tion and correlations) have to be computed, but only for the
last time window (previous time windows are already stored
in a dedicated table). Basic features are straightforward to
compute requiring negligible running time since they can
be computed using accumulators as the events come in. For
aggregated features, parallelization can be employed, since
they are all independent. In our experiments, correlation

computation was most time consuming, with an average
time to compute one correlation feature over the longest
time window taking 1489.2 seconds for all values over
the 29 days (Table I). For computing a single value (for
the newly streamed data), the time required should be on
average under 0.2 seconds. This estimate corresponds to a
linear dependence between the number of time windows
and computation time and offers an upper bound for the
time required. If this stage is performed in parallel on
BigQuery, this would also be the average time to compute
all 126 correlation features (each feature can be computed
independently so speedup would be linear).

In terms of dollar costs, we expect figures similar to those
during our tests — about 60 USD per day for storage and
analysis. To this, the streaming costs would have to be added
— currently 1 cent per 200MB. For our system, the original
raw data is about 200GB for all 29 days, so this would
translate to approximately 7GB of data streamed every day
for a system of similar size, leading to a cost of about 35
cents per day. At all times, only the last 12 days of features
need to be stored, which keeps data size relatively low. In
our analysis, for all 29 days, the final feature table requires
295GB of BigQuery storage, so 12 days would amount to
about 122GB of data.

When a new model has to be trained (e.g., once a day),
all necessary features are already computed. One can use
an infrastructure like the Google Compute Engine to train
the model, which would eliminate the need to download the
data and would allow for training of the individual classifiers
of the ensemble in parallel. In our tests, the entire ensemble
took under 9 hours to train, with each RF requiring at most 3
minutes. Again, since each classifier is independent, training
all classifiers in parallel would take under 3 minutes as well
(provided one can use as many CPUs as there are RFs — 420
in our study). Combining the classifiers takes a negligible
amount of time.

All in all, we expect the entire process of updating the
model to take under 5 minutes if full parallelization is used
both for feature computation and training. Application of the
model on new data requires a negligible amount of time once
features are available. This makes the method very practical
for on-line use. Here we have described a cloud computing
scenario, however, given the relatively limited computation
and storage resources that are required, we believe that more
modest clusters can also be used for monitoring, model
updating and prediction.

VII. CONCLUSIONS

We have presented a predictive study for failure of nodes
in a Google cluster based on a published workload trace.
Feature extraction from raw data was performed using
BigQuery, the big data cloud platform from Google which
enables SQL-like queries. A large number of features were
generated and an ensemble classifier was trained on log data

for 10 days and tested on the following non-overlapping day.
The length of the trace allowed repeating this process 15
times producing 15 benchmark datasets, with the last day in
each dataset being used for testing.

The BigQuery platform was extremely useful for obtain-
ing the features from log data. Although limits were found
for JOIN and GROUP BY statements, these were circumvented
by creating intermediate tables, which sometimes contained
over 12TB of data. Even so, features were obtained with
reduced running times, with overall cost for the entire
analysis processing one month worth of logs, coming in at
under 2000 USD2, resulting in a daily cost of just over 60
USD.

Classification performance varied from one benchmark to
another, with Area-Under-the-ROC curve measure varying
between 0.76 and 0.97 while Area-Under-the-Precision-
Recall curve measure varying between 0.38 and 0.87. This
corresponded to true positive rates in the range 27%-88%
and precision between 50% and 72% at a false positive rate
of 5%. In other words, this means that in the worst case, we
were able to identify 27% of failures, while if a data point
was classified as a failure, we could have 50% confidence
that we were looking at a real failure. For the best case, we
were able to identify almost 90% of failures and 72% of
instances classified as failures corresponded to real failures.
All this, at the cost of having false alarms 5% of the time.

Although not perfect, our predictions achieve good per-
formance levels. Results could be improved by changing the
subsampling procedure. Here, only a subset of the SAFE
data was used due to the large number of data points
in this class, and a random sample was extracted from
this subset when training each classifier in the ensemble.
However, one could subsample every time from the full set.
However, this would require greater computational resources
for training, since a single workstation cannot process 300
GB of data at a time. Training times could be reduced
through parallelization, since the problem is embarrassingly
parallel (each classifier in the ensemble can be trained
independently from the others). These improvements will
be pursued in the future. Introduction of additional features
will also be explored, to take into account in a more explicit
manner the interaction between machines. BigQuery will
be used to obtain interactions between machines from the
data, which will result in networks of nodes. Changes in
the properties of these networks over time could provide
important information on possible future failures.

The method presented here is very suitable for on-line
use. A new model can be trained every day, using the last
12 days of logs. This is the scenario we simulated when we
created the 15 test benchmarks. The model would be trained
from 10 days of data and tested on one non-overlapping day,
exactly like in the benchmarks (Figure 2). Then, it would

2Based on current Google BigQuery pricing.

be applied for one day to predict future failures. The next
day a new model would be obtained from new data. Each
time, only the last 12 days of data would be used, rather
than increasing the amount of training data. This to account
for the fact that the system itself and the workload can
change in time, so old data may not match current system
behavior. This would ensure that the model is up to date
with the current system state. The testing stage is required
for live use for two reasons. First, part of the test data is
used to build the ensemble (prediction-weighted voting).
Secondly, the TPR and precision values on test data can
help system administrators make decisions on the criticality
of the predicted failure.

ACKNOWLEDGMENTS

BigQuery analysis was carried out through a generous
Cloud Credits grant from Google. We are grateful to John
Wilkes of Google for helpful discussions regarding the
cluster trace data.

REFERENCES

[1] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management at
Google with Borg,” in Proceedings of the European Con-
ference on Computer Systems (EuroSys), Bordeaux, France,
2015.

[2] J. Wilkes, “More Google cluster data,” Google research
blog, Nov. 2011, Posted at http://googleresearch.blogspot.
com/2011/11/more-google-cluster-data.html.

[3] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Obfuscatory
obscanturism: making workload traces of commercially-
sensitive systems safe to release,” in Network Operations and
Management Symposium (NOMS), 2012 IEEE. IEEE, 2012,
pp. 1279–1286.

[4] J. Tigani and S. Naidu, Google BigQuery Analytics. John
Wiley & Sons, 2014.

[5] L. Rokach, “Ensemble-based classifiers,” Artificial Intelli-
gence Review, vol. 33, no. 1-2, pp. 1–39, 2010.

[6] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An
empirical study of learning from imbalanced data using
random forest,” in Tools with Artificial Intelligence, 2007.
ICTAI 2007. 19th IEEE International Conference on, vol. 2.
IEEE, 2007, pp. 310–317.

[7] A. Sı̂rbu and O. Babaoglu, “BigQuery and ML scripts
for ‘Predicting machine failures in a Google clus-
ter’,” Website, 2015, available at http://cs.unibo.it/∼sirbu/
Google-trace-prediction-scripts.html.

[8] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and
F. Herrera, “A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based approaches,”
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 42, no. 4, pp. 463–484,
2012.

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://cs.unibo.it/~sirbu/Google-trace-prediction-scripts.html
http://cs.unibo.it/~sirbu/Google-trace-prediction-scripts.html

[9] L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P.
Duin, “Is independence good for combining classifiers?” in
Pattern Recognition, 2000. Proceedings. 15th International
Conference on, vol. 2. IEEE, 2000, pp. 168–171.

[10] C. A. Shipp and L. I. Kuncheva, “Relationships between
combination methods and measures of diversity in combining
classifiers,” Information Fusion, vol. 3, no. 2, pp. 135 – 148,
2002.

[11] D. W. Opitz, J. W. Shavlik et al., “Generating accurate and
diverse members of a neural-network ensemble,” Advances in
neural information processing systems, pp. 535–541, 1996.

[12] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch, “Heterogeneity and Dynamicity of Clouds at
Scale: Google Trace Analysis,” in ACM Symposium on Cloud
Computing (SoCC), 2012.

[13] ——, “Towards understanding heterogeneous clouds at scale:
Google trace analysis,” Carnegie Mellon University Technical
Reports, vol. ISTC-CC-TR, no. 12-101, 2012.

[14] Z. Liu and S. Cho, “Characterizing Machines and Work-
loads on a Google Cluster,” in 8th International Workshop
on Scheduling and Resource Management for Parallel and
Distributed Systems (SRMPDS), 2012.

[15] S. Di, D. Kondo, and W. Cirne, “Characterization and Com-
parison of Google Cloud Load versus Grids,” in International
Conference on Cluster Computing (IEEE CLUSTER), 2012,
pp. 230–238.

[16] O. A. Abdul-Rahman and K. Aida, “Towards understanding
the usage behavior of Google cloud users: the mice and
elephants phenomenon,” in IEEE International Conference
on Cloud Computing Technology and Science (CloudCom),
Singapore, Dec. 2014, pp. 272–277.

[17] Q. Zhang, J. L. Hellerstein, and R. Boutaba, “Characterizing
Task Usage Shapes in Google’s Compute Clusters,” in Pro-
ceedings of the 5th International Workshop on Large Scale
Distributed Systems and Middleware, 2011.

[18] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das,
“Towards Characterizing Cloud Backend Workloads: Insights
from Google Compute Clusters,” Sigmetrics performance
evaluation review, vol. 37, no. 4, pp. 34–41, 2010.

[19] G. Wang, A. R. Butt, H. Monti, and K. Gupta, “Towards Syn-
thesizing Realistic Workload Traces for Studying the Hadoop
Ecosystem,” in 19th IEEE Annual International Symposium
on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2011, pp. 400–408.

[20] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat,
and C. R. Das, “Modeling and synthesizing task placement
constraints in google compute clusters,” in Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 2011,
p. 3.

[21] J. O. Iglesias, L. M. Lero, M. D. Cauwer, D. Mehta,
and B. O’Sullivan, “A methodology for online consolida-
tion of tasks through more accurate resource estimations,”
in IEEE/ACM Intl. Conf. on Utility and Cloud Computing
(UCC), London, UK, Dec. 2014.

[22] F. Caglar and A. Gokhale, “iOverbook: intelligent resource-
overbooking to support soft real-time applications in the
cloud,” in 7th IEEE International Conference on Cloud
Computing (IEEE CLOUD), Anchorage, AK, USA, Jun–
Jul 2014. [Online]. Available: http://www.dre.vanderbilt.edu/
∼gokhale/WWW/papers/CLOUD-2014.pdf

[23] D. Breitgand, Z. Dubitzky, A. Epstein, O. Feder, A. Glikson,
I. Shapira, and G. Toffetti, “An adaptive utilization accelerator
for virtualized environments,” in International Conference on
Cloud Engineering (IC2E), Boston, MA, USA, Mar. 2014,
pp. 165–174.

[24] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“Dynamic heterogeneity-aware resource provisioning in the
cloud,” IEEE Transactions on Cloud Computing (TCC),
vol. 2, no. 1, Mar. 2014.

[25] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and
F. Cappello, “Optimization of cloud task processing with
checkpoint-restart mechanism,” in 25th International Confer-
ence on High Performance Computing, Networking, Storage
and Analysis (SC), Denver, CO, USA, Nov. 2013.

[26] A. Balliu, D. Olivetti, O. Babaoglu, M. Marzolla, and
A. Sı̂rbu, “Bidal: Big data analyzer for cluster traces,” in
Informatika (BigSys workshop), vol. 232. GI-Edition Lecture
Notes in Informatics, 2014, pp. 1781–1795.

[27] S. Di, D. Kondo, and W. Cirne, “Host load prediction in
a Google compute cloud with a Bayesian model,” 2012
International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11, Nov. 2012.

[28] F. Salfner, M. Lenk, and M. Malek, “A survey of online fail-
ure prediction methods,” ACM Computing Surveys (CSUR),
vol. 42, no. 3, pp. 1–68, 2010.

[29] B. Javadi, D. Kondo, A. Iosup, and D. Epema, “The Failure
Trace Archive: Enabling the comparison of failure measure-
ments and models of distributed systems,” Journal of Parallel
and Distributed Computing, vol. 73, no. 8, 2013.

[30] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve,
F. Silva, and K. Vahi, “Failure analysis of distributed scientific
workflows executing in the cloud,” in Network and service
management (cnsm), 2012 8th international conference and
2012 workshop on systems virtualiztion management (svm).
IEEE, 2012, pp. 46–54.

[31] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure
Prediction in IBM BlueGene/L Event Logs,” Seventh IEEE
International Conference on Data Mining (ICDM 2007), pp.
583–588, Oct. 2007.

[32] R. Dudko, A. Sharma, and J. Tedesco, “Effective Failure
Prediction in Hadoop Clusters,” University of Idaho White
Paper, pp. 1–8, 2012.

[33] Q. Guan and S. Fu, “Adaptive anomaly identification by ex-
ploring metric subspace in cloud computing infrastructures,”
in 32nd IEEE Symposium on Reliable Distributed Systems
(SRDS), Braga, Portugal, Sep. 2013, pp. 205–214.

http://www.dre.vanderbilt.edu/~gokhale/WWW/papers/CLOUD-2014.pdf
http://www.dre.vanderbilt.edu/~gokhale/WWW/papers/CLOUD-2014.pdf

	Introduction
	Building the feature set with BigQuery
	Classification approach
	Classification results
	Related work
	Discussion
	Conclusions
	References

