4 research outputs found

    Slow Motion Zero Knowledge Identifying With Colliding Commitments

    Get PDF
    Discrete-logarithm authentication protocols are known to present two interesting features: The first is that the prover\u27s commitment, x=grx=g^r, claims most of the prover\u27s computational effort. The second is that xx does not depend on the challenge and can hence be computed in advance. Provers exploit this feature by pre-loading (or pre-computing) ready to use commitment pairs ri,xir_i,x_i. The rir_i can be derived from a common seed but storing each xix_i still requires 160 to 256 bits when implementing DSA or Schnorr. This paper proposes a new concept called slow motion zero-knowledge. SM-ZK allows the prover to slash commitment size (by a factor of 4 to 6) by combining classical zero-knowledge and a timing side-channel. We pay the conceptual price of requiring the ability to measure time but, in exchange, obtain communication-efficient protocols

    Rational cryptography: novel constructions, automated verification and unified definitions

    Get PDF
    Rational cryptography has recently emerged as a very promising field of research by combining notions and techniques from cryptography and game theory, because it offers an alternative to the rather inflexible traditional cryptographic model. In contrast to the classical view of cryptography where protocol participants are considered either honest or arbitrarily malicious, rational cryptography models participants as rational players that try to maximize their benefit and thus deviate from the protocol only if they gain an advantage by doing so. The main research goals for rational cryptography are the design of more efficient protocols when players adhere to a rational model, the design and implementation of automated proofs for rational security notions and the study of the intrinsic connections between game theoretic and cryptographic notions. In this thesis, we address all these issues. First we present the mathematical model and the design for a new rational file sharing protocol which we call RatFish. Next, we develop a general method for automated verification for rational cryptographic protocols and we show how to apply our technique in order to automatically derive the rational security property for RatFish. Finally, we study the intrinsic connections between game theory and cryptography by defining a new game theoretic notion, which we call game universal implementation, and by showing its equivalence with the notion of weak stand-alone security.Rationale Kryptographie ist kĂŒrzlich als ein vielversprechender Bereich der Forschung durch die Kombination von Begriffen und Techniken aus der Kryptographie und der Spieltheorie entstanden, weil es eine Alternative zu dem eher unflexiblen traditionellen kryptographischen Modell bietet. Im Gegensatz zur klassischen Ansicht der Kryptographie, nach der Protokollteilnehmer entweder als ehrlich oder willkĂŒrlich bösartig angesehen werden, modelliert rationale Kryptografie die Protokollteilnehmer als rationale Akteure, die versuchen ihren Vorteil zu maximieren und damit nur vom Protokoll abweichen, wenn sie dadurch einen Vorteil erlangen. Die wichtigsten Forschungsziele rationaler Kryptographie sind: das Design effizienterer Protokolle, wenn die Spieler ein rationale Modell folgen, das Design und die Implementierung von automatisierten Beweisen rationaler Sicherheitsbegriffe und die Untersuchung der intrinsischen Verbindungen zwischen spieltheoretischen und kryptographischen Begriffen. In dieser Arbeit beschĂ€ftigen wir uns mit all diesen Fragen. ZunĂ€chst prĂ€sentieren wir das mathematische Modell und das Design fĂŒr RatFish, ein neues rationales Filesharing-Protokoll. Dann entwickeln wir eine allgemeine Methode zur automatischen Verifikation rationaler kryptographischer Protokolle und wir zeigen, wie man unsere Technik nutzen kann, um die rationale Sicherheitseigenschaft von RatFish automatisch abzuleiten. Abschließend untersuchen wir die intrinsische Verbindungen zwischen Spieltheorie und Kryptographie durch die Definition von game universal implementation, einem neuen spieltheoretischen Begriff, und wir zeigen die Äquivalenz von game universal implementation und weak stand-alone security

    On the (Non-)Equivalence of UC Security Notions

    Get PDF
    Over the years, various security notions have been proposed in order to cope with a wide range of security scenarios. Recently, the study of security notions has been extended towards comparing cryptographic definitions of secure implementation with game-theoretic definitions of universal implementation of a trusted mediator. In this work we go a step further: We define the notion of game universal implementation and we show it is equivalent to weak stand-alone security. Thus, we are able to answer positively the open question from [Halpern&Pass2010] regarding the existence of game-theoretic definitions that are equivalent to cryptographic security notions for which the ideal world simulator does not depend on both the distinguisher and the input distribution. Moreover, we investigate the propagation of the weak stand-alone security notion through the existing security hierarchy, from stand-alone to universal composability. Our main achievement in this direction is a separation result between two variants of the UC security definition: 1-bit specialized simulator UC security and specialized simulator UC security. This solves an open question from [Lindell03] and comes in contrast with the well known equivalence result between 1-bit UC security and UC security. We also show that weak security under 1-bounded concurrent general composition is equivalent to 1-bit specialized simulator UC security. As a consequence, we obtain that the notion of weak stand-alone security and the notion of stand-alone security are not equivalent
    corecore