6,152 research outputs found

    A class of nonsymmetric preconditioners for saddle point problems

    Get PDF
    For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solution of a Schur complement system, an inexact form of the preconditioner can be of interest. This results in an inner-outer iterative process. Numerical experiments with solution of linearized Navier-Stokes equations demonstrate efficiency of the new preconditioner, especially when the left-upper block is far from symmetric

    A new approximate matrix factorization for implicit time integration in air pollution modeling

    Get PDF
    Implicit time stepping typically requires solution of one or several linear systems with a matrix I−τJ per time step where J is the Jacobian matrix. If solution of these systems is expensive, replacing I−τJ with its approximate matrix factorization (AMF) (I−τR)(I−τV), R+V=J, often leads to a good compromise between stability and accuracy of the time integration on the one hand and its efficiency on the other hand. For example, in air pollution modeling, AMF has been successfully used in the framework of Rosenbrock schemes. The standard AMF gives an approximation to I−τJ with the error τ2RV, which can be significant in norm. In this paper we propose a new AMF. In assumption that −V is an M-matrix, the error of the new AMF can be shown to have an upper bound τ||R||, while still being asymptotically O(τ2)O(\tau^2). This new AMF, called AMF+, is equal in costs to standard AMF and, as both analysis and numerical experiments reveal, provides a better accuracy. We also report on our experience with another, cheaper AMF and with AMF-preconditioned GMRES

    On block diagonal and block triangular iterative schemes and preconditioners for stabilized saddle point problems

    Get PDF
    We review the use of block diagonal and block lower/upper triangular splittings for constructing iterative methods and preconditioners for solving stabilized saddle point problems. We introduce new variants of these splittings and obtain new results on the convergence of the associated stationary iterations and new bounds on the eigenvalues of the corresponding preconditioned matrices. We further consider inexact versions as preconditioners for flexible Krylov subspace methods, and show experimentally that our techniques can be highly effective for solving linear systems of saddle point type arising from stabilized finite element discretizations of two model problems, one from incompressible fluid mechanics and the other from magnetostatics
    • …
    corecore