
Research Article
Block Preconditioners for Complex Symmetric Linear System
with Two-by-Two Block Form

Shi-Liang Wu and Cui-Xia Li

School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China

Correspondence should be addressed to Shi-Liang Wu; wushiliang1999@126.com

Received 31 May 2015; Accepted 4 August 2015

Academic Editor: Chih-Cheng Hung

Copyright © 2015 S.-L. Wu and C.-X. Li. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Based on the previouswork byZhang andZheng (Aparameterized splitting iterationmethod for complex symmetric linear systems,
Japan J. Indust. Appl. Math., 31 (2014) 265–278), three block preconditioners for complex symmetric linear system with two-by-
two block form are presented. Spectral properties of the preconditioned matrices are discussed in detail. It is shown that all the
eigenvalues of the preconditioned matrices are well-clustered. Numerical experiments are reported to illustrate the efficiency of the
proposed preconditioners.

1. Introduction

Consider the following complex symmetric linear system:
(𝑊+ 𝑖𝑇) z = h, (1)

where z = 𝑥 + 𝑖𝑦, h = 𝑓 + 𝑖𝑔, and matrices 𝑊,𝑇 ∈ R𝑛×𝑛

are symmetric positive definite. Here 𝑖 = √−1 denotes the
imaginary unit.

Complex symmetric linear systems of this kind (1) are
important and arise in a variety of scientific computing and
engineering applications, such as diffuse optical tomography
[1], quantum chemistry and eddy current problem [2, 3],
structural dynamics [4–9], FFT-based solution of certain
time-dependent PDEs [10], molecular dynamics and fluid
dynamics [11], and lattice quantum chromodynamics [12].
One can see [13–16] for more examples and additional
references.

To efficiently solve complex symmetric linear system
(1), an efficient approach is that one can adopt some real
arithmetics to solve one of the several 2𝑛 × 2𝑛 equivalent real
formulations and avoid solving the complex linear system.
For example, the complex symmetric linear system (1) can be
equivalently written as

𝑅𝑧 ≡ [
𝑊 −𝑇

𝑇 𝑊
][

𝑥

𝑦
] = [

𝑓

𝑔
] ≡ 𝑏. (2)

For other forms of the real equivalent formulations of the
complex symmetric linear system (1), one can see [11, 13, 17]
for more details. The advantage of this form may be of two
aspects: one is that it may be directly and efficiently solved in
some real arithmetics by Krylov subspace methods (such as
GMRES [18]), by alternating splitting iteration method (such
as PMHSS [19–21]), and by C-to-R iterationmethods [17, 20],
and the other is that one can construct some preconditioning
matrices to improve the speed of Krylov subspace methods
for solving the block two-by-two linear system (2); that is to
say, one can use some preconditioned Krylov subspace meth-
ods for solving the block two-by-two linear system (2). As
for the latter, in [11], numerical experiments show that some
Krylov subspace methods with standard ILU preconditioner
for this formulation (2) can perform reasonably well. In [13],
several types of block preconditioners have been discussed
and argued that if either the real part or the symmetric
part of the coefficient matrix is positive semidefinite, block
preconditioners for real equivalent formulations may be a
useful alternative to preconditioners for the original complex
formulation. In [19], the PMHSS preconditioner has been
presented and numerical experiments show that the PMHSS
preconditioner is efficient and robust.

Recently, Zhang and Zheng [22] consider the application
of the block triangular preconditioner:
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𝑃
+
= [

[

𝑊 + 2𝛼𝑇𝑊−1𝑇 0

(1 − 𝛼) 𝑇
1
2
𝑊

]

]

, (3)

where 𝛼 is a given positive constant, together with a Krylov
subspace iterative solver. It is obvious that 𝑃

+
is positive (real)

stable; that is, its eigenvalues are all real and positive. In [22], it
is shown that all the eigenvalues of the preconditionedmatrix
𝑃
−1
+

𝑅 are clustered and the preconditioner 𝑃
+

performs
better than the preconditioner PMHSS [19, 21] under certain
conditions.

In this paper, based on the idea of Simoncini [23], we
consider the following preconditioner:

𝑃
−
= [

[

𝑊 + 2𝛼𝑇𝑊−1𝑇 0

(1 − 3𝛼) 𝑇 −
1
2
𝑊

]

]

(𝛼 > 0) . (4)

Obviously, the preconditioner 𝑃
−

is indefinite, which is
different from the preconditioner 𝑃

+
. Theoretical analysis

shows that all the eigenvalues of the preconditioned matrix
𝑃
−1
−

𝑅 are well-clustered. To illustrate the efficiency of the
preconditioner 𝑃

−
, we also consider two block diagonal

preconditioners below

𝐷
+
= [

[

𝑊 + 2𝑇𝑊−1𝑇 0

0 1
2
𝑊

]

]

,

𝐷
−
=
[
[

[

𝑊 +
2
3
𝑇𝑊−1𝑇 0

0 −
1
2
𝑊

]
]

]

.

(5)

Our numerical experiments show that the indefinite block
triangular preconditioner 𝑃

−
is slightly more efficient than

the positive stable block triangular preconditioner 𝑃
+
and

both the block triangular preconditioners are more efficient
than both the block diagonal preconditioners 𝐷

+
and 𝐷

−
.

Obviously, when 𝛼 = 1, the block triangular preconditioner
𝑃
+
reduces to the block diagonal preconditioner 𝐷

+
; when

𝛼 = 1/3, the block triangular preconditioner 𝑃
−
reduces to

the block diagonal preconditioner𝐷
−
.

The remainder of the paper is organized as follows. In
Section 2, eigenvalue analysis for the preconditionedmatrices
𝑃
−1
−

𝑅, 𝐷−1
+
𝑅, and 𝐷−1

−
𝑅 is described in detail. In Section 3,

the results of numerical experiments are reported. Finally, in
Section 4 we give some conclusions to end the paper.

2. Eigenvalue Analysis

In general, the spectral properties of the preconditioned
matrix give important insight into the convergence behavior
of the preconditioned Krylov subspacemethods. In partic-
ular, for many linear systems arising in practice, a well-
clustered spectrum usually results in rapid convergence of
the preconditioned Krylov subspace methods, such as CG,
MINRES, andGMRES [24].Therefore, in this section, we will
investigate the eigenvalue distribution of the preconditioned
matrices 𝑃−1

−
𝑅,𝐷−1
+
𝑅, and𝐷−1

−
𝑅.

The spectral distribution of 𝑃
−1
−

𝑅 is described in the
following theorem.

Theorem 1. Let 𝑊 and 𝑇 be symmetric positive definite
and let 𝜆 be the eigenvalue of the matrix 𝑃

−1
−

𝑅. Then the
eigenvalues of the preconditioned matrix 𝑃−1

−
𝑅 are 1 (with

algebraic multiplicity 𝑛) and 𝜆 = −2(𝜇 + 𝜂)/(𝜇 + 2𝛼𝜂) with
𝜇 = 𝑢

∗𝑊𝑢/𝑢∗𝑢 and 𝜂 = V∗𝑇𝑊−1𝑇V/V∗V, where (𝑢; V) is the
corresponding eigenvector of the eigenvalue 𝜆.

Proof. Let 𝜆 be an eigenvalue of 𝑃−1
−

𝑅 with eigenvector (𝑢; V).
Then

[
𝑊 −𝑇

𝑇 𝑊
][

𝑢

V
] = 𝜆[

[

𝑊 + 2𝛼𝑇𝑊−1𝑇 0

(1 − 3𝛼) 𝑇 −
1
2
𝑊

]

]

[
𝑢

V
] . (6)

Equation (6) is equivalent to

𝑊𝑢−𝑇V = 𝜆 (𝑊+ 2𝛼𝑇𝑊−1𝑇) 𝑢,

𝑇𝑢 +𝑊V = 𝜆 (1− 3𝛼) 𝑇𝑢−
𝜆

2
𝑊V.

(7)

Based on (7), we get

(𝜆 + 2) V = − 2 (1−𝜆 (1− 3𝛼))𝑊−1𝑇𝑢, (8)

(𝜆 + 2)𝑊𝑢− (𝜆 + 2) 𝑇V

= (𝜆 + 2) 𝜆 (𝑊+ 2𝛼𝑇𝑊−1𝑇) 𝑢.
(9)

Multiplying (8) by matrix 𝑇 yields

(𝜆 + 2) 𝑇V = − 2 (1−𝜆 (1− 3𝛼)) 𝑇𝑊−1𝑇𝑢. (10)

Combining (10) with (9), we have

(𝜆 + 2)𝑊𝑢+ 2 (1−𝜆 (1− 3𝛼)) 𝑇𝑊−1𝑇𝑢

= (𝜆 + 2) 𝜆 (𝑊+ 2𝛼𝑇𝑊−1𝑇) 𝑢.
(11)

Multiplying (11) by 𝑢∗/𝑢∗𝑢, note that 𝜇 = 𝑢∗𝑊𝑢/𝑢∗𝑢 and
𝜂 = V∗𝑇𝑊−1𝑇V/V∗V, and then we have

(𝜆 + 2) 𝜇 + 2 (1−𝜆 (1− 3𝛼)) 𝜂

= (𝜆 + 2) 𝜆𝜇 + 2𝛼𝜆 (𝜆 + 2) 𝜂,
(12)

which is

𝜆
2
(𝜇 + 2𝛼𝜂) + 𝜆 (𝜇 − 2𝛼𝜂+ 2𝜂) − 2 (𝜇 + 𝜂) = 0. (13)

Roots of (13) are

𝜆 = 1, 𝜆 = −
2 (𝜇 + 𝜂)

𝜇 + 2𝛼𝜂
, (14)

which completes the proof.



Mathematical Problems in Engineering 3

Remark 2. From Theorem 1, it is not difficult to find that
the spectral distribution of 𝑃−1

−
𝑅 not only depends on the

parameter 𝛼, but also depends on the values of 𝜇 and 𝜂. If 𝛼 =

1 + 𝜇/2𝜂, then the preconditioned matrix 𝑃−1
−

𝑅 has precisely
two eigenvalues: ±1 whereas this is an ideal state, which is
difficult to achieve because 𝜇 and 𝜂 depend on the spectrum
of matrices 𝑊 and 𝑇𝑊

−1
𝑇. That is to say, 𝛼 = 1 + 𝜇/2𝜂 is

questionable in actual implementations. Even if possible, the
cost of the computation of the Schur complement 𝑇𝑊−1𝑇
may be high because matrix 𝑇𝑊−1𝑇 involves the inverse of
matrix𝑊.

In fact, based on the structure of the second eigenvalue,
𝜆 = −2(𝜇 + 𝜂)/(𝜇 + 2𝛼𝜂) with 𝜇 = 𝑢

∗𝑊𝑢/𝑢∗𝑢 and 𝜂 =

V∗𝑇𝑊−1𝑇V/V∗V, we can choose the value of 𝛼 to make all
the eigenvalues of the preconditioned matrix 𝑃−1

−
𝑅 more

clustered. A natural choice is 𝛼 = 1/2, which is independent
of the spectrum of matrices 𝑊 and 𝑇𝑊

−1𝑇. Obviously, in
this case, the preconditioned matrix 𝑃−1

−
𝑅 has precisely two

eigenvalues: 1 and −2. This fact is precisely stated as the
following corollary.

Corollary 3. Let 𝑊 and 𝑇 be symmetric positive definite and
let 𝜆 be the eigenvalue of the matrix 𝑃

−1
−

𝑅. If 𝛼 = 1/2, then
the eigenvalues of the preconditioned matrix 𝑃−1

−
𝑅 are 1 (with

algebraic multiplicity 𝑛) and −2 (with algebraic multiplicity 𝑛).

With respect to the spectral distribution of 𝑃−1
+

𝑅, the
following theorem is provided in [22].

Theorem 4. Let 𝑊 and 𝑇 be symmetric positive definite
and let 𝜆 be the eigenvalue of the matrix 𝑃

−1
+

𝑅. Then the
eigenvalues of the preconditioned matrix 𝑃−1

+
𝑅 are 1 (with

algebraic multiplicity 𝑛) and 𝜆 = 2(𝜇 + 𝜂)/(𝜇 + 2𝛼𝜂) with
𝜇 = 𝑢

∗𝑊𝑢/𝑢∗𝑢 and 𝜂 = V∗𝑇𝑊−1𝑇V/V∗V, where (𝑢; V) is the
corresponding eigenvector of the eigenvalue 𝜆.

Remark 5. Obviously, if we choose 𝛼 = 1+𝜇/2𝜂 inTheorem 4
[22], then the preconditioned matrix 𝑃

−1
+

𝑅 has precisely
one eigenvalue: 1, whereas this choice is questionable in
actual implementations and its reason is similar to that of
the preconditioner 𝑃

−
. If we choose 𝛼 = 1/2, then the

preconditioned matrix 𝑃
−1
+

𝑅 has precisely two eigenvalues: 1
and 2. Specifically, the following corollary is obtained.

Corollary 6. Let 𝑊 and 𝑇 be symmetric positive definite and
let 𝜆 be the eigenvalue of the matrix 𝑃

−1
+

𝑅. If 𝛼 = 1/2, then
the eigenvalues of the preconditioned matrix 𝑃−1

+
𝑅 are 1 (with

algebraic multiplicity 𝑛) and 2 (with algebraic multiplicity 𝑛).

From Corollaries 3 and 6, it is easy to find that the
preconditioned matrices 𝑃−1

−
𝑅 and 𝑃−1

+
𝑅 have precisely two

distinct eigenvalues. The former is 1 and −2, and the latter
is 1 and 2. So, in general, any Krylov subspace method with
optimality and Galerkin property may terminate in at most
two steps if roundoff errors are ignored. Based on the brief
discussion, in our numerical computations, we investigate the
spectral distribution of the preconditionedmatrices𝑃−1

−
𝑅 and

𝑃−1
+

𝑅 from two aspects: one is 𝛼 = 1/2, and the other is 𝛼 ̸=

1/2. From the numerical results of the preconditioner𝑃
−
(𝑃
+
),

the eigenvalue distributions of 𝑃−1
−

𝑅 and 𝑃−1
+

𝑅 with 𝛼 = 1/2
are slightly better than that of 𝑃−1

−
𝑅 and 𝑃−1

+
𝑅 with 𝛼 ̸= 1/2

from the viewpoint of eigenvalue clustering (specifically, one
can see the next section).

Concerning the spectral distribution of𝐷−1
−
𝑅, we have the

following theorem.

Theorem 7. Let 𝑊 and 𝑇 be symmetric positive definite
and let 𝜆 be the eigenvalue of the matrix 𝐷−1

−
𝑅. Then the

eigenvalues of the preconditioned matrix 𝐷−1
−
𝑅 are 1 (with

algebraic multiplicity 𝑛) and 𝜆 = −6(𝜇 + 𝜂)/(3𝜇 + 2𝜂) with
𝜇 = 𝑢

∗

𝑊𝑢/𝑢
∗

𝑢 and 𝜂 = V∗𝑇𝑊−1𝑇V/V∗V, where (𝑢; V) is the
corresponding eigenvector of the eigenvalue 𝜆.

Proof. Let 𝜆 be an eigenvalue of𝐷−1
−
𝑅with eigenvector (𝑢; V).

Then

[
𝑊 −𝑇

𝑇 𝑊
][

𝑢

V
] = 𝜆

[
[

[

𝑊 +
2
3
𝑇𝑊−1𝑇 0

0 −
1
2
𝑊

]
]

]

[
𝑢

V
] , (15)

which is equivalent to

𝑊𝑢−𝑇V = 𝜆(𝑊+
2
3
𝑇𝑊
−1
𝑇)𝑢,

𝑇𝑢 +𝑊V = −
𝜆

2
𝑊V.

(16)

Based on (16), we get

(𝜆 + 2) V = − 2𝑊−1𝑇𝑢, (17)

(𝜆 + 2)𝑊𝑢− (𝜆 + 2) 𝑇V

= (𝜆 + 2) 𝜆 (𝑊+
2
3
𝑇𝑊
−1
𝑇)𝑢.

(18)

Multiplying (17) by matrix 𝑇 yields

(𝜆 + 2) 𝑇V = − 2𝑇𝑊−1𝑇𝑢. (19)

Combining (18) with (19), we have

(𝜆 + 2)𝑊𝑢+ 2𝑇𝑊−1𝑇𝑢

= (𝜆 + 2) 𝜆 (𝑊+
2
3
𝑇𝑊
−1
𝑇)𝑢.

(20)

Multiplying (20) by 𝑢∗/𝑢∗𝑢, note that 𝜇 = 𝑢∗𝑊𝑢/𝑢∗𝑢 and
𝜂 = V∗𝑇𝑊−1𝑇V/V∗V, and then we have

(𝜆 + 2) 𝜇 + 2𝜂 = (𝜆 + 2) 𝜆𝜇 +
2
3
𝜆 (𝜆 + 2) 𝜂, (21)

which is equal to

𝜆
2
(3𝜇+ 2𝜂) + 𝜆 (3𝜇+ 4𝜂) − 6 (𝜇 + 𝜂) = 0. (22)

Both roots of (22) are

𝜆 = 1, 𝜆 = −
6 (𝜇 + 𝜂)

3𝜇 + 2𝜂
, (23)

which completes the proof.
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Figure 1: Spectrum of 𝑃−1
+

𝑅, 𝑃−1
−

𝑅,𝐷−1
+
𝑅, and𝐷−1

−
𝑅 for Example 1.

Similarly, the spectral distribution of𝐷−1
+
𝑅 is described in

the following theorem.

Theorem 8. Let 𝑊 and 𝑇 be symmetric positive definite
and let 𝜆 be the eigenvalue of the matrix 𝐷

−1
+
𝑅. Then the

eigenvalues of the preconditioned matrix 𝐷−1
+
𝑅 are 1 (with

algebraic multiplicity 𝑛) and 𝜆 = 2(𝜇 + 𝜂)/(𝜇 + 2𝜂) with
𝜇 = 𝑢∗𝑊𝑢/𝑢∗𝑢 and 𝜂 = V∗𝑇𝑊−1𝑇V/V∗V, where (𝑢; V) is the
corresponding eigenvector of the eigenvalue 𝜆.

3. Numerical Experiments

In this section, based on the above discussion, some numer-
ical experiments are reported to demonstrate the numerical
behavior of the 𝑃

+
, 𝑃
−
,𝐷
+
, and𝐷

−
preconditioning matrices

by solving the block two-by-two linear systems (2) with
the correspondingly preconditioned GMRES methods. To

compare the above four preconditioners on the basis of the
numbers of iteration counts (IT) and CPU times in seconds
(CPU), the following examples have been considered. In our
numerical experiments, all the computations are done with
MATLAB 7.0.

Example 1. The complex symmetric linear system (1) is of the
form

𝐴𝑥 ≡ (𝑊+ 𝑖𝑇) 𝑥 = 𝑏 (24)

with
𝑇 = 𝐼 ⊗𝑉+𝑉⊗ 𝐼,

𝑊 = 10 (𝐼 ⊗𝑉
𝑐
+𝑉
𝑐
⊗ 𝐼) + 9 (𝑒1𝑒

𝑇

𝑚
+ 𝑒
𝑚
𝑒
𝑇

1 ) ⊗ 𝐼,
(25)

where 𝑉 = tridiag(−1, 2, −1) ∈ R𝑚×𝑚, 𝑉
𝑐

= 𝑉 − 𝑒1𝑒
𝑇

𝑚
−

𝑒
𝑚
𝑒𝑇1 ∈ R𝑚×𝑚, and 𝑒1 and 𝑒

𝑚
are the first and the last
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Figure 2: Spectrum of 𝑃−1
+

𝑅, 𝑃−1
−

𝑅,𝐷−1
+
𝑅, and𝐷−1

−
𝑅 for Example 2.

unit vectors in R𝑚, respectively. Here 𝑇 and 𝑊 correspond
to the five-point centered difference matrices approximating
the negative Laplacian operator with homogeneous Dirichlet
boundary conditions and periodic boundary conditions,
respectively, on a uniform mesh in the unit square [0, 1] ×

[0, 1] with the mesh size ℎ = 1/(𝑚 + 1). The right hand side
vector 𝑏 is adjusted to be 𝑏 = (1+𝑖)𝐴1, with 1 being the vector
of all entries equal to 1 [5, 6].

Example 2. Consider the following complex symmetric lin-
ear system:

𝐴𝑥 ≡ [(−𝜔
2
𝑀+𝐾)+ 𝑖 (𝜔𝐶

𝑉
+𝐶
𝐻
)] 𝑥 = 𝑏, (26)

where 𝑀 and 𝐾 are the inertia and stiffness matrices, 𝐶
𝑉

and 𝐶
𝐻

are the viscous and hysteretic damping matrices,
respectively, and 𝜔 is the driving circular frequency. In our

numerical computations, we take 𝐶
𝐻

= 𝜇𝐾 with 𝜇 = 0.02
being a damping coefficient, 𝑀 = 𝐼, 𝜔 = 𝜋, 𝐶

𝑉
= 10𝐼, and

𝐾 the five-point centered difference matrix approximating
the negative Laplacian operator with homogeneous Dirichlet
boundary conditions, on a uniform mesh in the unit square
[0, 1] × [0, 1] with the mesh size ℎ = 1/(𝑚 + 1). In this
case, the matrix𝐾 ∈ R𝑛×𝑛 possesses the tensor-product form
𝐾 = 𝐼⊗𝑉

𝑚
+𝑉
𝑚
⊗ 𝐼with𝑉

𝑚
= ℎ−2tridiag(−1, 2, −1) ∈ R𝑚×𝑚.

In addition, the right hand side vector 𝑏 is adjusted to be
𝑏 = (1 + 𝑖)𝐴1, with 1 being the vector of all entries equal
to 1. For more detail, one can refer to [4–6, 13].

Firstly, the spectral distribution of the preconditioned
matrix has been provided because the spectral properties of
the preconditioned matrix give important insight into the
convergence behavior of the preconditioned Krylov subspace
methods. To illustrate the above results in Section 2, there
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Figure 3: Spectrum of 𝑃−1
+

𝑅 and 𝑃−1
−

𝑅 for Example 1.

is a need to test the eigenvalue distributions of the precon-
ditioned matrix 𝑃−1

+
𝑅, 𝑃−1
−

𝑅, 𝐷−1
+
𝑅, and 𝐷−1

−
𝑅. To this end,

for convenience, all the matrices tested are 512 × 512 unless
otherwisementioned; that is, themesh is a 16×16 grid. For the
eigenvalue distributions of the preconditioned matrix 𝑃

−1
+

𝑅

and𝑃−1
−

𝑅, fromCorollaries 3 and 6,we choose𝛼 = 1/2. In this
case, Figures 1 and 2 plot the eigenvalue distributions of the
preconditioned matrix 𝑃

−1
+

𝑅, 𝑃−1
−

𝑅, 𝐷−1
+
𝑅, and 𝐷−1

−
𝑅, where

Figure 1 corresponds to Example 1 and Figure 2 corresponds
to Example 2.

Figures 1 and 2 show that the preconditioned matrices
𝑃
−1
+

𝑅 and 𝐷−1
+
𝑅 have two clustering points: 1 and 2; the

preconditioned matrices 𝑃−1
−

𝑅 and 𝐷−1
−
𝑅 have also two

clustering points: 1 and −2. From the viewpoint of eigenvalue
clustering, the eigenvalue distributions of 𝑃

−1
−

𝑅 and 𝑃−1
+

𝑅

with 𝛼 = 1/2 are slightly better than that of 𝐷−1
−
𝑅 and

𝐷−1
+
𝑅.

To investigate the effect on the spectral distribution of the
preconditioned matrices 𝑃

−1
+

𝑅 and 𝑃−1
−

𝑅 with the different
value of 𝛼, Figures 3 and 4 plot the eigenvalue distributions
of the preconditioned matrices 𝑃

−1
+

𝑅 and 𝐷−1
+
𝑅 from two

aspects:𝛼 < 1/2 and𝛼 > 1/2. For𝛼 < 1/2,we choose𝛼 = 2/5;
for 𝛼 > 1/2, we choose 𝛼 = 3/5. In this case, the eigenvalue
distributions of the preconditioned matrices 𝑃−1

+
𝑅 and 𝐷−1

+
𝑅

are provided; see Figures 3 and 4.
Based on Figures 1–4, it is not difficult to find that

the eigenvalue distributions of the preconditioned matrices
𝑃−1
+

𝑅 and 𝑃−1
−

𝑅 with 𝛼 = 1/2 are more clustered than
that of the preconditioned matrices 𝑃−1

+
𝑅 and 𝑃−1

−
𝑅 with

𝛼 ̸= 1/2 under certain conditions. This information may
imply that the priority selection of parameter 𝛼 in the
preconditioners 𝑃

+
and 𝑃

−
is 1/2. That is to say, 𝛼 = 1/2 for

the preconditioners 𝑃
+
and 𝑃

−
may bring about good results

when the preconditioners 𝑃
+
and 𝑃

−
are applied to solve
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Figure 4: Spectrum of 𝑃−1
+

𝑅 and 𝑃
−1
−

𝑅 for Example 2.

block two-by-two linear systems (2) with the correspondingly
preconditioned GMRES methods.

Secondly, we investigate the performance of the precon-
ditioners 𝑃

+
, 𝑃
−
, 𝐷
+
, and 𝐷

−
. To this end, we use GMRES(ℓ)

precoditioned with the above four preconditioners to solve
the system of linear equations (2). In the implementations,
it is noted that the choice of the restart parameter ℓ of
GMRES(ℓ) is no general rule, which mostly depends on a
matter of experience in practice. For the sake of simplicity,
the value of the restart parameter ℓ is 20. Based on the
aforementioned discussion, we choose 𝛼 = 1/2 for the
preconditioners𝑃

+
and 𝑃
−
.The purpose of these experiments

is just to investigate the influence of the 𝑃
+
, 𝑃
−
, 𝐷
+
, and 𝐷

−

preconditioner on the convergence behaviors of GMRES(20).
All tests are started from the zero vector, and the GMRES(20)
method terminates if the relative residual error satisfies


𝑟(𝑘)

2
𝑟
(0)2

< 10−6. (27)

In Tables 1 and 2, we present some iteration results
to illustrate the convergence behavior of the 𝑃

+
, 𝑃
−
,

𝐷
+
, and 𝐷

−
preconditioner. “𝑃

+
-GMRES(𝑚)” denotes the

𝑃
+
-preconditioned GMRES(𝑚) method. “𝑃

−
-GMRES(𝑚)”

denotes the 𝑃
−
-preconditioned GMRES(𝑚) method. “𝐷

+
-

GMRES(𝑚)” denotes the 𝐷
+
-preconditioned GMRES(𝑚)

method and “𝐷
−
-GMRES(𝑚)” denotes the 𝐷

−
-precondi-

tioned GMRES(𝑚) method.
From Tables 1 and 2, we observe that these four precon-

ditioners for the system of linear equations (2) are feasible
and competitive; in particular, the iteration counts of 𝑃

+
and

𝑃
−
are hardly sensitive to change in the mesh sizes. More

specifically, the numbers of iteration counts of the block
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Table 1: IT and CPU for Example 1.

Grid 8 × 8 16 × 16 32 × 32 48 × 48

𝑃
+
-GMRES(20) IT 2 2 2 2

CPU 0.031 0.078 2.078 17.656

𝑃
−
-GMRES(20) IT 2 2 2 2

CPU 0.016 0.062 2.031 17.547

𝐷
+
-GMRES(20) IT 4 5 6 6

CPU 0.036 0.078 3.016 29.469

𝐷
−
-GMRES(20) IT 4 4 5 5

CPU 0.32 0.078 2.641 24.313

Table 2: IT and CPU for Example 2.

Grid 8 × 8 16 × 16 32 × 32 48 × 48

𝑃
+
-GMRES(20) IT 2 2 2 2

CPU 0.031 0.093 2.031 16.802

𝑃
−
-GMRES(20) IT 2 2 2 2

CPU 0.016 0.047 1.985 16.672

𝐷
+
-GMRES(20) IT 5 5 5 4

CPU 0.048 0.062 2.672 19.678

𝐷
−
-GMRES(20) IT 4 4 4 4

CPU 0.32 0.063 2.282 20.078

triangular preconditioner 𝑃
−
are the same as that of the block

triangular preconditioner 𝑃
+
. From CPU times, the block

triangular preconditioner 𝑃
−
is less than the block triangular

preconditioner 𝑃
+
. That is to say, in terms of iteration counts

and CPU times, the block triangular preconditioner 𝑃
−
is

slightlymore efficient than the positive stable block triangular
preconditioner 𝑃

+
. Both the block triangular preconditioners

𝑃
+
and 𝑃

−
are more efficient than both the block diagonal

preconditioners𝐷
+
and𝐷

−
.

To investigate the efficiency of the block triangular pre-
conditioners 𝑃

+
and 𝑃

−
with 𝛼 = 1/2, here we consider two

aspects 𝛼 < 1/2 and 𝛼 > 1/2. For 𝛼 < 1/2, we choose 𝛼 = 2/5;
for 𝛼 > 1/2, we choose 𝛼 = 3/5. In this case, Tables 3 and 4 list
some iteration results to illustrate the convergence behavior
of the block triangular preconditioners 𝑃

+
and 𝑃

−
.

From Tables 3 and 4, when 𝛼 = 2/5 or 𝛼 = 3/5, the block
triangular preconditioners 𝑃

+
and 𝑃

−
for the system of linear

equations (2) are feasible as well. In terms of iteration counts
and CPU times, 𝛼 = 2/5 (𝛼 = 3/5) for the block triangular
preconditioners 𝑃

+
and 𝑃

−
is less efficient than 𝛼 = 1/2 for

the block triangular preconditioners 𝑃
+
and 𝑃

−
. By a lot of

numerical experiments, we find that the efficiency of 𝛼 = 1/2
may be more efficient than that of 𝛼 ̸= 1/2 when the block
triangular preconditioners 𝑃

+
and 𝑃

−
are applied to solve

the system of linear equations (2). A lot of numerical results
show that the optimal parameter 𝛼 of the block triangular
preconditioners 𝑃

+
and 𝑃
−
is 1/2.

4. Conclusion

In this paper, we have analyzed the spectral properties as
well as the computational performance of several types of

Table 3: IT and CPU for Example 1 with 𝛼 = 2/5 and 𝛼 = 3/5.

Grid 8 × 8 16 × 16 32 × 32 48 × 48
𝛼 = 2/5

𝑃
+
-GMRES(20) IT 4 4 5 5

CPU 0.032 0.125 3.672 31.095

𝑃
−
-GMRES(20) IT 4 4 5 5

CPU 0.36 0.094 3.672 31.796
𝛼 = 3/5

𝑃
+
-GMRES(20) IT 4 4 4 5

CPU 0.031 0.109 3.171 31.062

𝑃
−
-GMRES(20) IT 4 4 5 5

CPU 0.32 0.094 3.641 31.047

Table 4: IT and CPU for Example 2 with 𝛼 = 2/5 and 𝛼 = 3/5.

Grid 8 × 8 16 × 16 32 × 32 48 × 48
𝛼 = 2/5

𝑃
+
-GMRES(20) IT 4 4 4 4

CPU 0.032 0.11 3.016 25.562

𝑃
−
-GMRES(20) IT 4 4 4 4

CPU 0.36 0.078 3.015 26.031
𝛼 = 3/5

𝑃
+
-GMRES(20) IT 4 4 4 4

CPU 0.031 0.11 3.266 26.124

𝑃
−
-GMRES(20) IT 4 4 4 4

CPU 0.32 0.078 3.421 26.969

block preconditioners for complex symmetric linear system
with two-by-two block form. In contrast to the triangular
preconditioner 𝑃

+
discussed in [22], we have given the spec-

tral properties of the preconditioned matrices 𝑃−1
−

𝑅, 𝐷−1
−
𝑅,

and𝐷−1
+
𝑅. Theoretical analysis shows that all the eigenvalues

of the preconditioned matrices 𝑃−1
−

𝑅, 𝐷−1
−
𝑅, and 𝐷−1

+
𝑅 are

well-clustered. For the block triangular preconditioners 𝑃
+

and 𝑃
−
, the parameter 𝛼 = 1/2 may be top priority. Our

numerical experiments indicate that the block triangular
preconditioners 𝑃

+
and 𝑃

−
are more effective in comparison

to the symmetric indefinite block diagonal preconditioner𝐷
−

and the symmetric positive definite block diagonal precondi-
tioner𝐷

+
under certain conditions.
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