77,171 research outputs found

    Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem

    Full text link
    An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CF's) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantum master equation approach, so non-Markovian open quantum system models that are not exactly solvable can use our derived evolution equation to easily obtain their two-time CF's of system operators, valid to second order in the system-environment interaction. Since the form and nature of the Hamiltonian are not specified in our derived evolution equation, our evolution equation is applicable for bosonic and/or fermionic environments and can be applied to a wide range of system-environment models with any factorized (separable) system-environment initial states (pure or mixed). When applied to a general model of a system coupled to a finite-temperature bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equation is valid for both L = L^+ and L \neq L^+ cases, in contrast to those evolution equations valid only for L = L^+ case in the literature. The derived equation that generalizes the quantum regression theorem (QRT) to the non-Markovian case will have broad applications in many different branches of physics. We then give conditions on which the QRT holds in the weak system-environment coupling case, and apply the derived evolution equation to a problem of a two-level system (atom) coupled to a finite-temperature bosonic environment (electromagnetic fields) with L \neq L^+.Comment: To appear in the Journal of Chemical Physics (12 pages, 1 figure

    Variational Principle for Mixed Classical-Quantum Systems

    Full text link
    An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector which includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker-Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment, as a collective variable rather than as a parameter, is presented in the Appendix.Comment: 16 pages, LaTex; added Figure 2 and Figure

    The Rotating-Wave Approximation: Consistency and Applicability from an Open Quantum System Analysis

    Full text link
    We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly reproduced, but the details of the quantum state may not be. The RWA made before the trace is more problematic: it results in incorrect values for environmentally-induced shifts to system frequencies, and the resulting theory has no Markovian limit. We point out that great care must be taken when coupling two open systems together under the RWA. Though the RWA can yield a master equation of Lindblad form similar to what one might get in the Markovian limit with white noise, the master equation for the two coupled systems is not a simple combination of the master equation for each system, as is possible in the Markovian limit. Such a naive combination yields inaccurate dynamics. To obtain the correct master equation for the composite system a proper consideration of the non-Markovian dynamics is required.Comment: 17 pages, 0 figures

    Phase Diffusion in Quantum Dissipative Systems

    Full text link
    We study the dynamics of the quantum phase distribution associated with the reduced density matrix of a system for a number of situations of practical importance, as the system evolves under the influence of its environment, interacting via a quantum nondemoliton type of coupling, such that there is decoherence without dissipation, as well as when it interacts via a dissipative interaction, resulting in decoherence as well as dissipation. The system is taken to be either a two-level atom (or equivalently, a spin-1/2 system) or a harmonic oscillator, and the environment is modeled as a bath of harmonic oscillators, starting out in a squeezed thermal state. The impact of the different environmental parameters on the dynamics of the quantum phase distribution for the system starting out in various initial states, is explicitly brought out. An interesting feature that emerges from our work is that the relationship between squeezing and temperature effects depends on the type of system-bath interaction. In the case of quantum nondemolition type of interaction, squeezing and temperature work in tandem, producing a diffusive effect on the phase distribution. In contrast, in case of a dissipative interaction, the influence of temperature can be counteracted by squeezing, which manifests as a resistence to randomization of phase. We make use of the phase distributions to bring out a notion of complementarity in atomic systems. We also study the dispersion of the phase using the phase distributions conditioned on particular initial states of the system.Comment: Accepted for publication in Physical Review A; changes in section V; 20 pages, 12 figure

    Markovian master equations for quantum thermal machines: local vs global approach

    Get PDF
    The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.Comment: Published version. See also the related work by J. Onam Gonzalez et al. arXiv:1707.0922
    corecore