170 research outputs found

    On stability of the Hamiltonian index under contractions and closures

    Get PDF
    The hamiltonian index of a graph GG is the smallest integer kk such that the kk-th iterated line graph of GG is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an AG(F)A_G(F)-contractible subgraph FF of a graph GG nor the closure operation performed on GG (if GG is claw-free) affects the value of the hamiltonian index of a graph GG

    Characterizing topological order with matrix product operators

    Get PDF
    One of the most striking features of gapped quantum phases that exhibit topological order is the presence of long-range entanglement that cannot be detected by any local order parameter. The formalism of projected entangled-pair states is a natural framework for the parameterization of gapped ground state wavefunctions which allows one to characterize topological order in terms of the virtual symmetries of the local tensors that encode the wavefunction. In their most general form, these symmetries are represented by matrix product operators acting on the virtual level, which leads to a set of algebraic rules characterizing states with topological quantum order. This construction generalizes the concepts of G- and twisted injectivity; the corresponding matrix product operators encode all topological features of the theory and provide a complete picture of the ground state manifold on the torus. We show how the string-net models of Levin and Wen fit within this formalism and in doing so provide a particularly intuitive interpretation of the pentagon equation for F-symbols as the pulling of matrix product operators through the string-net tensor network. Our approach paves the way to finding novel topological phases beyond string nets and elucidates the description of topological phases in terms of entanglement Hamiltonians and edge theories

    Constraint characterization and degree of freedom counting in Lagrangian field theory

    Full text link
    We present a Lagrangian approach to counting degrees of freedom in first-order field theories. The emphasis is on the systematic attainment of a complete set of constraints. In particular, we provide the first comprehensive procedure to ensure the functional independence of all constraints and discuss in detail the possible closures of the constraint algorithm. We argue degrees of freedom can but need not correspond to physical modes. The appendix comprises fully worked out, physically relevant examples of varying complexity.Comment: 12 pages + Appendix and Reference

    Fermionic matrix product states and one-dimensional topological phases

    Get PDF
    We develop the formalism of fermionic matrix product states (fMPS) and show how irreducible fMPS fall in two different classes, related to the different types of simple Z(2) graded algebras, which are physically distinguished by the absence or presence of Majorana edge modes. The local structure of fMPS with Majorana edge modes also implies that there is always a twofold degeneracy in the entanglement spectrum. Using the fMPS formalism, we make explicit the correspondence between the Z(8) classification of time-reversal-invariant spinless superconductors and the modulo 8 periodicity in the representation theory of real Clifford algebras. Studying fMPS with general onsite unitary and antiunitary symmetries allows us to define invariants that label symmetry-protected phases of interacting fermions. The behavior of these invariants under stacking of fMPS is derived, which reveals the group structure of such interacting phases. We also consider spatial symmetries and show how the invariant phase factor in the partition function of reflection-symmetric phases on an unorientable manifold appears in the fMPS framework

    Stability under Galerkin truncation of A-stable Runge--Kutta discretizations in time

    Get PDF
    We consider semilinear evolution equations for which the linear part is normal and generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. We approximate their semiflow by an implicit, A-stable Runge--Kutta discretization in time and a spectral Galerkin truncation in space. We show regularity of the Galerkin-truncated semiflow and its time-discretization on open sets of initial values with bounds that are uniform in the spatial resolution and the initial value. We also prove convergence of the space-time discretization without any condition that couples the time step to the spatial resolution. Then we estimate the Galerkin truncation error for the semiflow of the evolution equation, its Runge--Kutta discretization, and their respective derivatives, showing how the order of the Galerkin truncation error depends on the smoothness of the initial data. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schr\"odinger equation
    corecore