14,226 research outputs found

    Guidance and maneuver analyzer Patent

    Get PDF
    Guidance analyzer having suspended spacecraft simulating sphere for astronavigatio

    Operational computer graphics in the flight dynamics environment

    Get PDF
    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed

    Apollo experience report. Guidance and control systems: Command and service module stabilization and control system

    Get PDF
    The concepts, design, development, testing, and flight results of the command and service module stabilization and control system are discussed. The period of time covered was from November 1961 to December 1972. Also included are a functional description of the system, a discussion of the major problems, and recommendations for future programs

    TDRSS momentum unload planning

    Get PDF
    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems

    Apollo experience report: Simulation of manned space flight for crew training

    Get PDF
    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs

    Apollo experience report guidance and control systems

    Get PDF
    The Apollo guidance and control systems for both the command module and the lunar module are described in a summary report. General functional requirements are discussed, and general functional descriptions of the various subsystems and their interfaces are provided. The differences between the original in-flight maintenance concept and the final lunar-orbital-rendezvous concept are discussed, and the background in philosophy, the system development, and the reasons for the change in concept are chronologically presented. Block diagrams showing the command module guidance and control system under each concept are included. Significant conclusions and recommendations contained in more detailed reports on specific areas of the guidance and control systems are included

    A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    Get PDF
    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations

    Interactive experimenters' planning procedures and mission control

    Get PDF
    The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule

    Spacecraft attitude detection system by stellar reference Patent

    Get PDF
    Attitude detection system using stellar references for three-axis control and spin stabilized spacecraf

    Orbit/attitude estimation for the GOES spacecraft using VAS landmark data

    Get PDF
    A software system is described which provides for batch least squares estimation of spacecraft orbit, attitude, and camera bias parameters using image data from the Geostationary Operational Environmental Satellites (GOES). The image data are obtained by the Visible and Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS). The resulting estimated parameters are used for absolute image registration. Operating in the Digital Equipment Corporation (DEC) PDP-11/70 computer, the FORTRAN system also includes the capabilities of image display and manipulations. An overview of the system is presented as well as some numerical results obtained from observations taken by the SMS-2 satellite over a 3 day interval in August 1975
    • …
    corecore