219 research outputs found

    On the convergence of a linesearch based proximal-gradient method for nonconvex optimization

    Get PDF
    We consider a variable metric linesearch based proximal gradient method for the minimization of the sum of a smooth, possibly nonconvex function plus a convex, possibly nonsmooth term. We prove convergence of this iterative algorithm to a critical point if the objective function satisfies the Kurdyka-Lojasiewicz property at each point of its domain, under the assumption that a limit point exists. The proposed method is applied to a wide collection of image processing problems and our numerical tests show that our algorithm results to be flexible, robust and competitive when compared to recently proposed approaches able to address the optimization problems arising in the considered applications

    Variable metric inexact line-search based methods for nonsmooth optimization

    Get PDF
    We develop a new proximal-gradient method for minimizing the sum of a differentiable, possibly nonconvex, function plus a convex, possibly non differentiable, function. The key features of the proposed method are the definition of a suitable descent direction, based on the proximal operator associated to the convex part of the objective function, and an Armijo-like rule to determine the step size along this direction ensuring the sufficient decrease of the objective function. In this frame, we especially address the possibility of adopting a metric which may change at each iteration and an inexact computation of the proximal point defining the descent direction. For the more general nonconvex case, we prove that all limit points of the iterates sequence are stationary, while for convex objective functions we prove the convergence of the whole sequence to a minimizer, under the assumption that a minimizer exists. In the latter case, assuming also that the gradient of the smooth part of the objective function is Lipschitz, we also give a convergence rate estimate, showing the O(1/k) complexity with respect to the function values. We also discuss verifiable sufficient conditions for the inexact proximal point and we present the results of a numerical experience on a convex total variation based image restoration problem, showing that the proposed approach is competitive with another state-of-the-art method

    A variable metric forward--backward method with extrapolation

    Full text link
    Forward-backward methods are a very useful tool for the minimization of a functional given by the sum of a differentiable term and a nondifferentiable one and their investigation has experienced several efforts from many researchers in the last decade. In this paper we focus on the convex case and, inspired by recent approaches for accelerating first-order iterative schemes, we develop a scaled inertial forward-backward algorithm which is based on a metric changing at each iteration and on a suitable extrapolation step. Unlike standard forward-backward methods with extrapolation, our scheme is able to handle functions whose domain is not the entire space. Both {an O(1/k2){\mathcal O}(1/k^2) convergence rate estimate on the objective function values and the convergence of the sequence of the iterates} are proved. Numerical experiments on several {test problems arising from image processing, compressed sensing and statistical inference} show the {effectiveness} of the proposed method in comparison to well performing {state-of-the-art} algorithms

    Nested Distributed Gradient Methods with Adaptive Quantized Communication

    Full text link
    In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where communication can be costly. We propose and analyze a class of nested distributed gradient methods with adaptive quantized communication (NEAR-DGD+Q). We show the effect of performing multiple quantized communication steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with increasing number of consensus steps and adaptive quantization. We test the performance of the method, as well as some practical variants, on quadratic functions, and show the effects of multiple quantized communication steps in terms of iterations/gradient evaluations, communication and cost.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1709.0299

    New convergence results for the scaled gradient projection method

    Get PDF
    The aim of this paper is to deepen the convergence analysis of the scaled gradient projection (SGP) method, proposed by Bonettini et al. in a recent paper for constrained smooth optimization. The main feature of SGP is the presence of a variable scaling matrix multiplying the gradient, which may change at each iteration. In the last few years, an extensive numerical experimentation showed that SGP equipped with a suitable choice of the scaling matrix is a very effective tool for solving large scale variational problems arising in image and signal processing. In spite of the very reliable numerical results observed, only a weak, though very general, convergence theorem is provided, establishing that any limit point of the sequence generated by SGP is stationary. Here, under the only assumption that the objective function is convex and that a solution exists, we prove that the sequence generated by SGP converges to a minimum point, if the scaling matrices sequence satisfies a simple and implementable condition. Moreover, assuming that the gradient of the objective function is Lipschitz continuous, we are also able to prove the O(1/k) convergence rate with respect to the objective function values. Finally, we present the results of a numerical experience on some relevant image restoration problems, showing that the proposed scaling matrix selection rule performs well also from the computational point of view
    • …
    corecore