5 research outputs found

    On some simplicial elimination schemes for chordal graphs

    Get PDF
    We present here some results on particular elimination schemes for chordal graphs, namely we show that for any chordal graph we can construct in linear time a simplicial elimination scheme starting with a pending maximal clique attached via a minimal separator maximal (resp. minimal) under inclusion among all minimal separators

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Reduced clique graphs of chordal graphs

    Get PDF
    AbstractWe investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs, and discuss chordal graphs that admit a tree representation with a small number of leaves
    corecore