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On some simpliial elimination shemes forhordal graphsMihel Habib 1LIAFA, CNRS and Université Paris Diderot - Paris 7, FraneVinent Limouzy 2Dept. of Computer Siene, University of Toronto, CanadaAbstratWe introdued here an interesting tool for the strutural study of hordal graphs,namely the Redued Clique Graph. Using some of its ombinatorial propertieswe show that for any hordal graph we an onstrut in linear time a simpliialelimination sheme starting with a pending maximal lique attahed via a minimalseparator maximal under inlusion among all minimal separators.Keywords: Chordal graphs, minimal separators, simpliial elimination sheme,redued lique graph.1 IntrodutionIn the following text, a graph is always �nite, simple, loopless, undireted andonneted. A graph is hordal i� it has no hordless yle of length ≥ 4.The lass of hordal graphs is one of the �rst lass to have been studied at
1 Email: habib�liafa.jussieu.fr
2 Email: limouzy�s.toronto.edu



the beginning of the theory of perfet graphs. Sine then hordal graphs havebeen intensively studied, as an be seen in the following books [9,2℄.Let us reall the main notions de�ned for hordal graphs. A maximallique of G is a omplete subgraph maximal under inlusion. A minimalseparator is a subset of verties S for whih it exist a, b ∈ G suh that a and
b are not onneted in G−S, and S is minimal under inlusion with this prop-erty. A vertex is simpliial if its neighborhood is a lique (omplete graph).An ordering x1, . . . , xn of the verties is a simpliial elimination sheme,if for every i ∈ [1, n−1] xi is a simpliial vertex in G[xi+1, . . . xn]. Amaximallique tree is a tree T that satis�es the following three onditions: Vertiesof T are assoiated with the maximal liques of G. Edges of T orrespond tominimal separators. For any vertex x ∈ G, the liques ontaining x yield asubtree of T .Using results of Dira [5℄, Fulkerson, Gross [6℄, Buneman [3℄, Gavril [8℄and Rose, Tarjan and Lueker [12℄, we have:Theorem 1.1 The following 5 statements are equivalent and haraterizehordal graphs.(i) G has a simpliial elimination sheme(ii) Every minimal separator is a lique(iii) G admits a maximal lique tree.(iv) G is the intersetion graph of subtrees in a tree.(v) Any LexBFS provides a simpliial elimination sheme.2 The Redued Clique GraphDe�nition 2.1 For a hordal graph G, we denote by C the set of maximalliques of G and by Cr(G) the redued lique graph, i.e. the graph whoseverties are the maximal liques of G, and two liques are joined by an edgei� their intersetion separates them (i.e. if for every x ∈ C − (C ∩ C ′) andevery y ∈ C ′ − (C ∩ C ′), C ∩ C ′ is a minimal separators for x and y in G).Clearly Cr(G) is a subgraph of the intersetion graph of the maximal liquesof G. Eah edge CC ′ of Cr(G) an be labelled with the minimal separator
S = C ∩ C ′.Lemma 2.2 [7℄ Let us onsider three maximal liques C1, C2, C3 in G, suhthat S = C1 ∩ C2 and U = C2 ∩ C3 are minimal separators in G, then S ⊂ Uimplies that C1 ∩ C3 is a minimal separator of G.



(a) (b) ()
(d)Fig. 1. An example of a hordal graph (a), its redued lique-graph (b), note thatalthough the maximal liques {b, d, e} and {c, e, f} interset the orresponding edgeis missing. Two maximal lique-trees are shown ()-(d).Lemma 2.3 [7℄ Let us onsider a triangle in Cr(G) together with its 3 minimalseparators labelling its edges. Then two of these minimal separators must beequal and inluded in the third.With these two lemmas it is easy to prove the following result:Proposition 2.4 [1,7℄ For a hordal graph G maximal lique trees orrespondto maximum spanning trees of Cr(G) when the edges are labelled with the sizeof the minimal separator they are assoiated with. Furthermore Cr(G) is theunion of all maximal lique trees of G.As a onsequene, all maximal lique trees de�ne the same multiset ofminimal separators, and from one maximal lique tree to another we anproeed by exhanging edges (with same label) on triangles. But the graph

Cr(G) has still more ombinatorial properties, that we now onsider. Let usnow study the limit ase of the two previous lemmas, when S = U . First weneed a basi separating lemma (whih an also be found in a more generalsetting of tree deompositions, see lemma 12.3.1 in [4℄).Lemma 2.5 Separating lemmaLet T be a maximal lique tree and C1C2 and edge of T . Let T1 and T2 the



two onneted omponents of T −C1C2. If we de�ne Vi for i=1,2 the union ofall maximal liques in Ti. Then S = C1 ∩C2 separates every x ∈ V1 − S fromany y ∈ V2 − S.Lemma 2.6 Let us onsider three maximal liques C1, C2, C3 in G, suh that
S = C1 ∩ C2 = U = C2 ∩ C3 are minimal separators in G, then either theedge C1C3 ∈ Cr(G) or the two edges C1C2, C2C3 annot belong both to a samemaximal lique tree.Proof. Suppose that the edge C1C3 does not belong to Cr(G), i.e. that S =
C1 ∩ C3 does not separate C1 − S from C3 − S. Therefore if it exists somemaximal lique tree T ontaining both edges C1C2, C2C3, this would ontraditthe above separating lemma 2.5. 2Lemma 2.7 Let us onsider three maximal liques C1, C2, C3 in G, suh that
S = C1 ∩ C2 = U = C2 ∩ C3 are minimal separators in G, if the edges
C1C2, C2C3 belong both to a same maximal lique tree T . Then C1C3 ∈ Cr(G)and C1 ∩ C3 = UProof. Using the previous lemma neessarily C1C3 ∈ Cr(G), but lemma 1just states that C1 ∩ C3 ⊆ U = S. If this is a strit inlusion then one anbuild a new maximal lique tree T ′ by exhanging the edges C1C2 by C1C3.But then T ′ would be a better spanning tree than T whih ontradits theoptimality of T and therefore C1 ∩ C3 = U = S. 23 Min-max separatorsFor a �nite hordal graph G, let us all a min-max (resp. min-min) separator
S, a minimal separator that is maximal (resp. minimal) under inlusion amongall minimal separators of G.Theorem 3.1 [10℄ Let G be a hordal graph, then it exists a maximal lique-tree T that admits a pending edge labelled with a min-max separator.Proof. The proof will proeed by transforming a maximal lique tree usingthe above lemmas. Let us onsider T a maximal lique tree of G and someedge ab ∈ T labelled with a min-max separator S. First we need to de�ne anoperation on liques trees, namely the hain-redution. Suppose ab is not apending edge in T , therefore T − {ab} is the disjoint union of two non emptytrees Ta, Tb. If one of these trees, say Ta admits a lead edge xy labelled with aminimal separator S ′ ⊂ S (y being the pending lique in T ). Then the wholehain in Ta joining ab to xy is labelled with minimal separators ontaining



S ′. Using this fat and suessive appliations of the above lemmas, we aninterhange in Ta the edges xy and ay (or equivalently in T exhanging xy by
by). Let us go bak to the proof of the theorem. If one of the subtrees Ta, Tb,say Ta is made up with edges labelled with minimal separators inluded in
S, then using the hain-redution operation we an produe another maximallique tree T ′ in whih all the edges of Ta are leaves attahed to b and ab is aleaf and we have �nished. Else it exists in one of the subtrees Ta, Tb, say Ta,some edge zt labelled with S ′ whih is not omparable with S. We reurseon the maximal minimal separator that ontains S ′ and whih neessarilybelongs to Ta. This proess neessarily ends by �nding a leaf in the tree whihis labelled with a max-min separator, beause eah time we reurse on a stritsubtree. 2Suh maximal lique trees seem to play an important role for the studyof path graphs [10℄. The above proof also suggests a dual result for min-minseparators. But as it was notied by M. Preissmann [11℄, suh a maximallique tree does not always exist. The graph depited in �gure 2 does notadmit a min-min elimination sheme.
Fig. 2. Preissmann's ounter example [11℄, A graph, its redued lique graph andone maximal lique treeUsing the above onstrutive proof, a polynomial sheme an be obtainedto ompute a min-max elimination shemes. As shown in Figure 3, lassialgraph searhes do not provide suh elimination sheme.
Fig. 3. An exemple of graph on whih MCS, LexBFS fail to �nd a max-minsimpliial vertex. For any starting vertex, both searhes will end on e of f .



Corollary 3.2 Suh trees an be obtained in linear time.Proof. We prove the result in the min-max ase. To obtain suh a tree we an�rst ompute a maximal lique tree T of G as explained in [7℄, with its edgesbeing labelled with the minimal separators of G. We an sort the minimalseparators with respet to their size in linear time, and therefore start withan edge ab labelled with a max-min separator S and then explore Ta and stopeither beause the whole subtree is labelled with minimal separators ontainedin S, then it su�es to modify the tree, or beause we have found an edgelabelled with some edge xy labelled with a minimal separator S ′ inomparablewith S. In this ase, among all edges in Ta, onsider the edge zt labelled witha min-max separator S ′′ inomparable with S, and reurse on zt. During thisalgorithm an edge of T is at most traversed twie, whih yields the linearityof the whole proess. 2Corollary 3.3 For any hordal graph there exist an elimination sheme thatfollows a linear extension of the ontainment ordering of the minimal separa-tors. It an be omputed in O(n.m).Proof. It is well-known, that one an produe elimination sheme on thefollowing way. Take any maximal lique tree T of a hordal graph G, andlet C be a leaf of this tree, attah to the tree via the minimal separator S.Suessively prune all verties in C − S and reurse on T − C the maximallique tree of G − {C − S}. To �nish the proof it su�es to apply the abovetheorem. Eah time the above algorithm is applied requires O(n + m), thisyields the omplexity. 2It should be notied that not every linear extension of the ontainmentordering an be obtained with an elimination sheme.4 Reversible elimination shemesA reversible elimination sheme is just an ordering of the verties whih issimpliial in both diretions. As shown by the graph alled 3-sun, there existgraphs for whih one an prove that there is no reversible elimination sheme.A vertex is said to be bisimpliial if its neighbourhood an be partionnedinto two liques. Furthermore, if a graph G admits suh a reversible elimina-tion sheme, this implies that eah vertex is either simpliial or bisimpliial.Therefore suh a graph annot ontain any law (K1,3) as subgraph.Theorem 4.1 A graph G admits a reversible ordering if and only if G isproper interval graph.



Proof. Let us onsider a unit interval graph G and one of its unitary intervalrepresentation. Therefore to eah vertex x ∈ G we an assoiate an interval
I(x) = [left(x), right(x)] of length one of the real line, suh that xy is anedge i� I(x) ∩ I(y) 6= ∅. Let us onsider the total ordering τ of the vertiesof G de�ned as follows: x ≤τ y i� (right(x) < right(y)). Let x be the�rst vertex of this ordering, learly its neighborhood is a lique. Thus τis an elimination sheme. Reversibility is straightforward. Conversely let usproeed by ontradition. Let us assume that G admits a reversible eliminationordering and that G is not a proper interval graph. As proper interval graphadmit a haraterization by forbidden indued subgraphs, we an assume thatour graph ontains one of the graph as a subgraph. The forbidden sugraphsfor proper interval graphs are the net, the law and the sun of size 3. Thesegraphs are depited in �gure 4. So to prove our laim it is su�ient to see thatnone of these graphs admit a reversible elimination ordering. For the law, wealready notied it. Considering the 3-sun, it is easy to hek that eah vertexis bisimpliial. If we onsider the sugraph indued by {a, b, c, d, e}, this graphforms the bull. And this graph admit only one reversible elimination orderingwhih is a, b, d, c, e. To onvine ourself a and e has to be the extremities ofthe ordering (d is not a good andidate sine it is not simpliial in the wholegraph). Then to satisfy b, sine a is already positionned c and d have to be onthe right. In the same way to satisfy c, sine e is already positionned b and dhave to be on the left. Finally the only ordering to full�ll all the onstraintsis a, b, d, c, e. But now, when we want to add f , eah position in the previousorder will violate the onstraint for at least one vertex. A ontradition. Forthe net, the proof is similar. 2

(a) Claw: K1,3 (b) 3-Sun () netFig. 4. Forbidden indued subgraphs for proper interval graphs.sAknoledgements:We are grateful to B. Lévêque for pointing out useful referenes.
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