520 research outputs found

    A Tutte polynomial inequality for lattice path matroids

    Full text link
    Let MM be a matroid without loops or coloops and let T(M;x,y)T(M;x,y) be its Tutte polynomial. In 1999 Merino and Welsh conjectured that max(T(M;2,0),T(M;0,2))T(M;1,1)\max(T(M;2,0), T(M;0,2))\geq T(M;1,1) holds for graphic matroids. Ten years later, Conde and Merino proposed a multiplicative version of the conjecture which implies the original one. In this paper we prove the multiplicative conjecture for the family of lattice path matroids (generalizing earlier results on uniform and Catalan matroids). In order to do this, we introduce and study particular lattice path matroids, called snakes, used as building bricks to indeed establish a strengthening of the multiplicative conjecture as well as a complete characterization of the cases in which equality holds.Comment: 17 pages, 9 figures, improved exposition/minor correction

    Improved bounds for the number of forests and acyclic orientations in the square lattice

    Get PDF
    In a recent paper Merino and Welsh (1999) studied several counting problems on the square lattice LnL_n. The authors gave the following bounds for the asymptotics of f(n)f(n), the number of forests of LnL_n, and α(n)\alpha(n), the number of acyclic orientations of LnL_n: 3.209912limnf(n)1/n23.841613.209912 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.84161 and 22/7limnα(n)3.7092522/7 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.70925. In this paper we improve these bounds as follows: 3.64497limnf(n)1/n23.741013.64497 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.74101 and 3.41358limnα(n)3.554493.41358 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.55449. We obtain this by developing a method for computing the Tutte polynomial of the square lattice and other related graphs based on transfer matrices

    Transfer Matrices for the Partition Function of the Potts Model on Toroidal Lattice Strips

    Full text link
    We present a method for calculating transfer matrices for the qq-state Potts model partition functions Z(G,q,v)Z(G,q,v), for arbitrary qq and temperature variable vv, on strip graphs GG of the square (sq), triangular (tri), and honeycomb (hc) lattices of width LyL_y vertices and of arbitrarily great length LxL_x vertices, subject to toroidal and Klein bottle boundary conditions. For the toroidal case we express the partition function as Z(Λ,Ly×Lx,q,v)=d=0Lyjbj(d)(λZ,Λ,Ly,d,j)mZ(\Lambda, L_y \times L_x,q,v) = \sum_{d=0}^{L_y} \sum_j b_j^{(d)} (\lambda_{Z,\Lambda,L_y,d,j})^m, where Λ\Lambda denotes lattice type, bj(d)b_j^{(d)} are specified polynomials of degree dd in qq, λZ,Λ,Ly,d,j\lambda_{Z,\Lambda,L_y,d,j} are eigenvalues of the transfer matrix TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} in the degree-dd subspace, and m=Lxm=L_x (Lx/2L_x/2) for Λ=sq,tri(hc)\Lambda=sq, tri (hc), respectively. An analogous formula is given for Klein bottle strips. We exhibit a method for calculating TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} for arbitrary LyL_y. In particular, we find some very simple formulas for the determinant det(TZ,Λ,Ly,d)det(T_{Z,\Lambda,L_y,d}), and trace Tr(TZ,Λ,Ly)Tr(T_{Z,\Lambda,L_y}). Corresponding results are given for the equivalent Tutte polynomials for these lattice strips and illustrative examples are included.Comment: 52 pages, latex, 10 figure

    Multi-core computation of transfer matrices for strip lattices in the Potts model

    Full text link
    The transfer-matrix technique is a convenient way for studying strip lattices in the Potts model since the compu- tational costs depend just on the periodic part of the lattice and not on the whole. However, even when the cost is reduced, the transfer-matrix technique is still an NP-hard problem since the time T(|V|, |E|) needed to compute the matrix grows ex- ponentially as a function of the graph width. In this work, we present a parallel transfer-matrix implementation that scales performance under multi-core architectures. The construction of the matrix is based on several repetitions of the deletion- contraction technique, allowing parallelism suitable to multi-core machines. Our experimental results show that the multi-core implementation achieves speedups of 3.7X with p = 4 processors and 5.7X with p = 8. The efficiency of the implementation lies between 60% and 95%, achieving the best balance of speedup and efficiency at p = 4 processors for actual multi-core architectures. The algorithm also takes advantage of the lattice symmetry, making the transfer matrix computation to run up to 2X faster than its non-symmetric counterpart and use up to a quarter of the original space

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial

    Get PDF
    We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47} (resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <= m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19 Postscript figures. Also included are Mathematica files data_CYL.m and data_FREE.m. Many changes from version 1: new material on series expansions and their analysis, and several proofs of previously conjectured results. Final version to be published in J. Stat. Phy

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof
    corecore