3,885 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog

    A spatial interference minimization strategy for the correlated LTE downlink channel

    Get PDF
    • 

    corecore