11 research outputs found

    Minimizing internal speedup for performance guaranteed optical packet switches

    Get PDF
    Providing QoS guarantee for Internet services is very important It evokes the issue that packet switches should provide guaranteed performance (i.e. 100% throughput with bounded worst-case delay). Optical switching technology is widely considered as an excellent solution for packet switches in future networks. However, to achieve guaranteed performance in optical packet switches, an internal speedup is required due to the existence of reconfiguration overhead. How to reduce the internal speedup is the main concern for making these switches practical In this paper, we first derive the internal speedup S as a function of the number of switch configurations N S and the reconfiguration overhead δ, or S=f(N S,δ). We show that the recently proposed ADJUST algorithm is flawed. Based on the internal speedup function we derived, a new algorithm (ADAPTIVE), with time complexity of O((λ-l)N 2logN), is proposed to minimize S. © 2004 IEEE.published_or_final_versio

    On optimization of optical packet switches with reconfiguration overhead

    Get PDF
    Optical packet switching is one of the most promising technologies for carrying IP traffic over WDM optical networks. For optical packet switch (OPS) design, due to the reconfiguration overhead in the switch fabric, packet delay and speedup are two key factors to be considered. Existing scheduling algorithms, DOUBLE [4] and ADAPTIVE [5], make effective tradeoff between these two factors. In this paper, we show that the performance of both DOUBLE and ADAPTIVE, as well as their underlying OPS switch architecture, can be further optimized. Our proposed solutions are shown to effectively reduce both speedup and packet delay at the same time without incurring any extra cost. © 2005 IEEE.published_or_final_versio

    Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    Get PDF

    Traffic scheduling in non-blocking optical packet switches with minimum delay

    Get PDF
    For performance guaranteed OPS switches with reconfiguration overhead, it has been shown that packet delay can be minimized by using N switch configurations (where N is the switch size) to schedule the traffic. However, this usually involves an exorbitant speedup requirement, which makes it impractical under current technology. In this paper, a new minimum-delay scheduling algorithm QLEF (Quasi Largest-Entry-First) is proposed. We prove that QLEF pushes the required speedup bound to the lowest known level. As an example, when N=950, QLEF only requires a speedup of S schedule=21.33 instead of 42.25 for MIN [5] and 30.27 for α i-SCALE [8]. This gives a 50% improvement over MIN and 30% over α i-SCALE. © 2005 IEEE.published_or_final_versio

    Scheduling optical packet switches with minimum number of configurations

    Get PDF
    In order to achieve the minimum traffic delay in a performance guaranteed optical packet switch (OPS) with reconfiguration overhead, the switch fabric has to use the minimum number of configurations (i.e. N configurations where N is the switch size) for traffic scheduling. This requires a very high speedup in the switch fabric to compensate for the loss in scheduling efficiency. The high speedup requirement makes the idea of using N configurations (to schedule the traffic) impractical under current technology. In this paper, we propose a new scheduling algorithm called α i-SCALE to lower the speedup required. Compared with the existing MIN algorithm [5], α i- SCALE succeeds in pushing the speedup bound (i.e. worst-case speedup requirement) to a much lower level. For example, when N=200, the speedup bound required to compensate the loss in scheduling efficiency is 30.75 for MIN, whereas 23.45 is sufficient for our α i-SCALE. © 2005 IEEE.published_or_final_versio

    An analytical model for input-buffered optical packet switches with reconfiguration overhead

    Get PDF
    The overhead associated with reconfiguring a switch fabric in optical packet switches is an important issue in relation to the packet transmission time and can adversely affect switch performance. The reconfiguration overhead increases the mean waiting time of packets and reduces throughput. The scheduling of packets must take into account the reconfiguration frequency. This work proposes an analytical model for input-buffered optical packet switches with the reconfiguration overhead and analytically finds the optimal reconfiguration frequency that minimizes the mean waiting time of packets. The analytical model is suitable for several round-robin (RR) scheduling schemes in which only non-empty virtual output queues (VOQs) are served or all VOQs are served and is used to examine the effects of the RR scheduling schemes and various network parameters on the mean waiting time of packets. Quantitative examples demonstrate that properly balancing the reconfiguration frequency can effectively reduce the mean waiting time of packets

    Design and stability analysis of high performance packet switches

    Get PDF
    With the rapid development of optical interconnection technology, high-performance packet switches are required to resolve contentions in a fast manner to satisfy the demand for high throughput and high speed rates. Combined input-crosspoint buffered (CICB) switches are an alternative to input-buffered (IB) packet switches to provide high-performance switching and to relax arbitration timing for packet switches with high-speed ports. A maximum weight matching (MWM) scheme can provide 100% throughput under admissible traffic for lB switches. However, the high complexity of MWM prohibits its implementation in high-speed switches. In this dissertation, a feedback-based arbitration scheme for CICB switches is studied, where cell selection is based on the provided service to virtual output queues (VOQs). The feedback-based scheme is named round-robin with adaptable frame size (RR-AF) arbitration. The frame size in RR-AF is adaptably changed by the serviced and unserviced traffic. If a switch is stable, the switch provides 100% throughput. Here, it is proved that RR-AF can achieve 100% throughput under uniform admissible traffic. Switches with crosspoint buffers need to consider the transmission delays, or round-trip times to define the crosspoint buffer size. As the buffered crossbar switch can be physically located far from the input ports, actual round-trip times can be non-negligible. To support non-negligible round-trip times in a buffered crossbar switch, the crosspoint buffer size needs to be increased. To satisfy this demand, this dissertation investigates how to select the crosspoint buffer size under non-negligible round trip times and under uniform traffic. With the analysis of stability margin, the relationship between the crosspoint buffer size and round-trip time is derived. Considering that CICB switches deliver higher performance than lB switches and require no speedup, this dissertation investigates the maximum throughput performance that these switches can achieve. It is shown that CICB switches without speedup achieve 100% throughput under any admissible traffic through a fluid model. In addition, a new hybrid scheme, based on longest queue-first (as input arbitration) and longest column occupancy first (as output arbitration) is proposed, which achieves 100% throughput under uniform and non-uniform traffic patterns. In order to give a better insight of the feedback nature of arbitration scheme for CICB switches, a frame-based round-robin arbitration scheme with explicit feedback control (FRE) is introduced. FRE dynamically sets the frame size according to the input load and to the accumulation of cells in a VOQ. FRE is used as the input arbitration scheme and it is combined with RR, PRR, and FRE as output arbitration schemes. These combined schemes deliver high performance under uniform and nonuniform traffic models using a buffered crossbar with one-cell crosspoint buffers. The novelty of FRE lies in that each VOQ sets the frame size by an adjustable parameter, Δ(i,j) which indicates the degree of service needed by VOQ(i, j). This value is adjusted according to the input loading and the accumulation of cells experienced in previous service cycles. This dissertation also explores an analysis technique based on feedback control theory. This methodology is proposed to study the stability of arbitration and matching schemes for packet switches. A continuous system is used and a control model is used to emulate a queuing system. The technique is applied to a matching scheme. In addition, the study shows that the dwell time, which is defined as the time a queue receives service in a service opportunity, is a factor that affects the stability of a queuing system. This feedback control model is an alternative approach to evaluate the stability of arbitration and matching schemes
    corecore