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Abstract The overhead associated with reconfiguring a
switch fabric in optical packet switches is an important
issue in relation to the packet transmission time and can
adversely affect switch performance. The reconfiguration
overhead increases the mean waiting time of packets and
reduces throughput. The scheduling of packets must take
into account the reconfiguration frequency. This work pro-
poses an analytical model for input-buffered optical packet
switches with the reconfiguration overhead and analytically
finds the optimal reconfiguration frequency that minimizes
the mean waiting time of packets. The analytical model is
suitable for several round-robin (RR) scheduling schemes
in which only non-empty virtual output queues (VOQs) are
served or all VOQs are served and is used to examine the
effects of the RR scheduling schemes and various network
parameters on the mean waiting time of packets. Quantitative
examples demonstrate that properly balancing the reconfig-
uration frequency can effectively reduce the mean waiting
time of packets.
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1 Introduction

Input-buffered packet switches using hybrid optical/elec-
tronic architecture are recently considered a promising
approach for the implementation of high-speed scalable
switches. The input-buffered architecture is a feasible solu-
tion to meet high-speed and large-scale switching require-
ments, because the architecture can internally operate at the
same speed of input/output ports. Moreover, optical buffers
using fiber delay lines are still expensive and bulky today and
typically provide worse performance due to the dimension
problem [5]. Therefore, the input-buffered packet switches
using hybrid optical/electronic architecture are very interest-
ing for future high-capacity routers and switches.

The input-buffered packet switches require high-speed
and scalable optical switch fabrics for the packet transmission
between buffers and output ports. Recent progress in opti-
cal switching technologies [9,16,17,20,24,29] has enabled
these requirements. However, input-buffered packet switches
with optical switch fabrics suffer from the overhead asso-
ciated with reconfiguring a switch fabric [25–27]. Recon-
figuring input and output connections in an optical switch
fabric takes time, and aligning arriving packets and the opti-
cal switch fabric also takes time. Currently, optical switch
fabrics in which the reconfiguration overhead is within the
nanoseconds or picoseconds range are only available on a
small scale, such as 2 × 2 [16,22] and 4 × 4 [24]. Most
large-scale optical switch fabrics exploit technologies that
are associated with a reconfiguration overhead within the
milliseconds range, such as microelectromechanical systems
(MEMS) [9,13,17,19,20,29]. Therefore, the reconfiguration
overhead is an important issue in relation to the packet trans-
mission time and throughput.

The reconfiguration overhead increases the mean wait-
ing time of packets and reduces throughput, because packets

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Chung Hsing University Institutional Repository

https://core.ac.uk/display/41687632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


210 Photon Netw Commun (2011) 22:209–220

cannot be transmitted across the switch fabric during the
reconfiguration period. Scheduling schemes must take the
reconfiguration frequency into account for improving the per-
formance in terms of mean waiting time and throughput. Sev-
eral scheduling schemes [2,14,25–27] that are based on time-
slot assignment (TSA) have been presented to reduce the
total reconfiguration overhead and guarantee 100% through-
put. However, the time complexities of these scheduling
schemes that are based on TSA fall in the range of O(N 2.5)

to O(N 3.5), where N is the number of ports. At high N ,
these schemes give rise to prohibitively high overhead for
scheduling packets in a batch.

This work uses a different method. It intends to find,
through numerical analysis, the optimal reconfiguration fre-
quency at which optical switches can transmit packets with
the minimum waiting time and proposes an analytical model
to facilitate the analysis on reconfiguration optimization for
the input-buffered packet switches. It regards switch recon-
figuration as a stochastic process and views the arrival time
and the service time of each packet as a random variable.
Switches are reconfigured cyclically, and packets are selected
in each cycle for transmission from input buffers to out-
puts. The analytical model is based on Markovian analysis
[1,3,4,6,11,28], and is suitable for round-robin scheduling
schemes in which only non-empty VOQs [21] are served or
all VOQs are served. The numerical analysis demonstrates
how various scheduling schemes and network parameters
affect the optimal reconfiguration frequency.

The rest of this paper is organized as follows. In Sect. 2,
we introduce several scheduling schemes and the input-buf-
fered switch architecture for the analysis on reconfiguration
optimization. In Sect. 3, we propose the analytical model for
the input-buffered packet switches with the reconfiguration
overhead. In Sect. 4, we validate the analytical model by com-
paring the analytical results with the simulation results and
discuss how various scheduling schemes and network param-
eters affect the optimal reconfiguration frequency. Finally, we
conclude our discussion in Sect. 5.

2 Input-buffered switch architecture and scheduling
schemes

This work considers a class of input-buffered switch archi-
tecture as shown in Fig. 1. The input-buffered switch
architecture is composed of N VOQs at each input and a
N × N buffer-less optical fabric. Each input and each out-
put are interconnected by the optical fabric in a fully meshed
manner. At each input, arriving packets are stored in the VOQ
corresponding to the destined output. The optical fabric real-
izes any one-to-one mapping of inputs to outputs. We call
such a mapping a switch configuration. With a configura-
tion, the optical fabric is allowed to move packets from the

Fig. 1 Input-buffered switch architecture with VOQs

specified VOQs to the corresponding outputs. The optical
fabric is reconfigured periodically to vary the switch config-
uration.

This work makes the following six assumptions to make
our analytical model tractable:

1. All time durations are discretized and normalized so that
the service time of a packet is a multiple of the time slot.
The optical fabric forwards packets in a synchronous
fashion and on the boundary of the time slot.

2. The optical fabric is periodically reconfigured and set at
a regular time interval, T slots, referred to as a cycle.
Each cycle comprises a reconfiguration period and a ser-
vice period. Packets can be switched across the switch
fabric during the service period.

3. Each reconfiguration period takes an overhead of δ slots,
referred to as reconfiguration overhead. This assumption
is intended to reflect all effects, such as synchronization
overhead and mechanical settling times, that interrupt the
transmission of packets as the optical fabric is reconfig-
ured.

4. Each VOQ is served during a fixed-length service period
of M slots and then waits during a variable-length vaca-
tion [7,10–12]. Each vacation comprises a reconfigura-
tion period and several cycles, and the length of each
vacation depends on the scheduling scheme used in the
system.

5. A served packet will be preempted if the fixed-length ser-
vice period of M slots ends and the packet transmission
is still in progress.

6. Only those packets present in the served VOQ at the
beginning of a service period can be served during the
service period. The packets arriving during the service
period will not be immediately served and they need to
wait for the next service period.

Moreover, this work employs three round-robin (RR)
scheduling scheme to study reconfiguration optimization of
the input-buffered packet switches: a basic RR scheduling
scheme (BRR), the iSLIP scheduling scheme [18], and a RR
with empty queues skipped scheduling scheme (RREQS).
In BRR, each output uses a RR counter to assign an input
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Fig. 2 A timing diagram for a basic RR scheduling scheme

to serve in circular order. The corresponding VOQ of the
assigned input is served during a fixed-length service period
of M slots and then waits during a vacation. The vacation is
fixed-length, because the corresponding VOQ needs to wait
for the other (N − 1) VOQs, that correspond to the other
outputs, to be served during the vacation, as shown in Fig. 2.

In iSLIP and RREQS, the vacation is variable-length
because only non-empty VOQs are served for reducing the
unused bandwidth due to empty VOQs. However, iSLIP has
a contention problem that several outputs may grant the
requests of the same input but only an output will be accepted
by the input. On the other hand, RREQS does not have
the contention problem, because RREQS utilizes a N 2 × N
buffer-less optical fabric to realize any many-to-one mapping
of inputs to outputs. Simulation results of these RR schedul-
ing schemes will be compared in Sect. 4.3.

3 Analytical model for optical packet switches
with reconfiguration overhead

This section develops an analytical model for performance
analysis of the input-buffered packet switches. The analytical
model is based on a fixed-time service system with vacations.
We employs stochastic decomposition [7,15,23] to derive
equations of the fixed-time service system with vacations.
We are particularly interested in calculating the mean wait-
ing time of packets, denoted E[W ], and the average number
of the packets in the system, denoted E[P].

3.1 Basic service system with vacations

The key concept of the stochastic decomposition is that the
number of packets present in the system at a random slot is
distributed as the sum of two or more independent random
variables, one of which is the number of packets present in
the corresponding GeoX/G/1 system at a random slot. Note
that a GeoX/G/1 system is a single-server discrete-time sys-
tem with generally distributed service times and an arrival
process in which more than one packet can arrive during a
single slot. In this subsection, we begin with a GeoX/G/1
system with vacations and use the stochastic decomposi-
tion to derive probability generating functions (PGFs) of

steady-state probability distributions of the GeoX/G/1 sys-
tem with vacations. These PGFs and the stochastic decom-
position will be used to derive PGFs of the fixed-time service
system with vacations in the next subsection.

In the GeoX/G/1 system with vacations, the length (mea-
sured in slots) of each service period is variable. A service
period ends when there are no packets in the system and then a
vacation begins. If there are packets in the system at the end
of the vacation, another service period will begin. If there
are still no packets in the system at the end of the vacation,
another vacation will begin. We assume that the length V of
each vacation is an independent and identically distributed
random variable. Let v(k) and V (u) be the probability mass
function and the PGF for V , respectively, and we have

v(l) � Pr[V = l] for l = 1, 2, . . .

V (u) �
∞∑

l=1

v(l)ul for |u| ≤ 1. (1)

In order to derive equations of the GeoX /G/1 system with
vacations, we define B as the service time (measured in slots)
of each packet, and each service is started and completed at
exact slot boundaries. The probability distributions of B are

b(l) � Pr[B = l] for l = 1, 2, . . .

B(u) �
∞∑

l=1

b(l)ul for |u| ≤ 1, (2)

where b(i) is the probability mass function and B(u) is the
PGF for B. Let b and b(i) be the mean and the ith factorial
moment of B, respectively, and we have

b � E[B] = B(1)(1)

b(2) � E[B2] = B(2)(1) + B(1)(1) (3)

b(i) � E[Bi ] for i = 3, 4 . . .

Let Λ denotes the number of packets that arrive during a
single slot. The probability distributions of Λ are defined as

λ(i) � Pr[Λ = i] for i = 0, 1, 2, . . .

Λ(z) �
∞∑

i=0

λ(i)zi , (4)

where λ(i) is the probability mass function and Λ(z) is the
PGF for Λ. Let λ and λ(i) be the mean and the ith factorial
moment of Λ, respectively, and we have

λ � E[Λ] = Λ(1)(1) =
∞∑

k=0

λ(k)zk−1k

λ(2) � E[Λ(Λ − 1)] = Λ(2)(1) (5)

λ(i) � E[Λ(Λ − 1) . . . (Λ − i + 1)] = Λ(i)(1)

for i = 3, 4 . . .

Therefore, the traffic load ρ is equal to λb. Fut
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Now, we take on the unfinished work U , which is defined
as the remaining service time (measured in slots) of the served
packets, immediately after an arbitrary slot in the GeoX/G/1
system with vacations. According to the stochastic decom-
position, U is distributed as the sum of the unfinished work
UGeoX /G/1 immediately after an arbitrary slot in the corre-
sponding GeoX/G/1 system and an independent random
variable Y . Boxma and Groenendijk [3] show that Y is the
service time of the packets in the system at the beginning
of an arbitrary slot during a vacation. Y is also the service
time brought to the system by the packets that arrive until the
arbitrary slot during a vacation because the system is empty
at the beginning of a vacation. Let U (z), UGeoX /G/1(z), and
Y (z) be the PGFs of U, UGeoX /G/1, and Y , respectively, and
we have

U (z) = Y (z)UGeoX /G/1(z),

where Y (z) = 1 − V [Λ(B(z))]
E[V ][1 − Λ(B(z))] (6)

and UGeoX /G/1(z) = (1 − ρ)(1 − z)Λ[B(z)]
Λ[B(z)] − z

.

Differentiating U (z) with respect to z and taking the limit as
z → 1, we can find that the expected values of U, UGeoX /G/1,
and Y are

E[U ] = E[UGeoX /G/1] + E[Y ]
E[Y ] = ρE[V (V − 1)]

2E[V ] (7)

E[UGeoX /G/1] = λb(2) + λ(2)b2 + ρ(1 − 2ρ)

2(1 − ρ)
.

In a similar manner of computing U (z), [23] shows that
the PGF of the system size immediately after an arbitrary
slot is

P(z) = χ(z)PGeoX /G/1(z),

where χ(z) = 1 − V [Λ(z)]
E[V ][1 − Λ(z)] (8)

and PGeoX /G/1(z) = (1 − ρ)(1 − z)B[Λ(z)]
B[Λ(z)] − z

.

Note that PGeoX /G/1(z) is the P(z) of the corresponding
GeoX/G/1 system and χ(z) is the PGF of the number of
the packets present in the system at the beginning of an arbi-
trary slot during a vacation. Differentiating (8) with respect
to z and taking the limit as z → 1, we obtain the average
number of packets in the system

E[P] = E[χ ] + E[PGeoX /G/1],
where E[χ ] = λE[V (V − 1)]

2E[V ] (9)

and E[PGeoX /G/1] = λ2b(2) + λ(2)b − λρ

2(1 − ρ)
+ ρ.

From Little’s theorem [8], we have E[W ] = E[P]/λ.
Note that E[Y ] = bE[χ ] because Y is the service time and

χ is the number of the packets in the system at the beginning
of an arbitrary slot during a vacation, respectively. Takag-
i [23] shows a corresponding equation, Y (z) = χ [B(z)].
From (7) and (9), we have

E[P] = E[Y ]
b

+ E[PGeoX /G/1]. (10)

3.2 Fixed-time service system with vacations

In this subsection, we deal with a fixed-time service system
with vacations. We assume that the length of each service
period is fixed of M slots even if packets in the system may
not need M slots for transmission. In this service system,
only those packets present in the system at the beginning
of a service period are served during the service period. As
the current service period ends and a packet transmission is
not completed, the packets are preempted and the system is
forced to take a vacation. After the vacation is over, the next
service period begins and the system resumes the transmis-
sion of the preempted packet.

In the fixed-time service system with vacations, the unfin-
ished work U immediately after an arbitrary slot is distrib-
uted as the sum of UGeoX /G/1 and Y . It is worth mentioning
that the fixed-time service system with vacations may have
an unfinished work, denoted as U e, at the beginning of each
vacation. Therefore, Y in the fixed-time service system with
vacations is distributed as the sum of U e and the service
time brought to the system by the packets that arrive until an
arbitrary slot during a vacation.

Therefore, according to the stochastic decomposition, the
PGF U (u) of the unfinished work immediately after an arbi-
trary slot boundary in the fixed-time service system with
vacations can be computed by

U (u) = UGeoX /G/1 × U e(u) × 1−V [Λ[B(u)]]
E[V ](1−Λ[B(u)]) , (11)

where U e(u) denotes the PGF of the unfinished work U e. The
third factor of the r.h.s. of (11) is the service time brought to
the system by the packets that arrive until an arbitrary slot
during a vacation. From (11), the average unfinished work
immediately after an arbitrary slot boundary can be computed
by

E[U ] = E[UGeoX /G/1] + E[U e] + ρE[V (V − 1)]
2E[V ] (12)

andE[UGeoX /G/1] = λb(2) + λ(2)b2 + ρ(1 − 2ρ)

2(1 − ρ)
,

where E[U e] is the mean unfinished work at the beginning
of each vacation. From (10) and (12), the average number of
packets can be computed by
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E[P] = E
[
PGeoX /G/1

] + E
[
U e

]

b
+ λE[V (V − 1)]

2E[V ] .

(13)

Applying Little’s theorem to (13), we have

E[W ] = E
[
PGeoX /G/1

]

λ
+ E

[
U e

]

λb
+ E[V (V − 1)]

2E[V ] .

(14)

Now, we come to a point where E
[
U e

]
must be computed in

order to solve E[U ], E[P], and E[W ]. This will be shown
in the next subsection.

3.3 Computational method of the unfinished work E[U e]

In this subsection, we present a computational method for
computing E[U e] of the fixed-time service system with vaca-
tions. The computational method is based on the construction
of two Markov chains described as follows.

Let us define uk as the steady-state probability that the
unfinished work U e at the beginning of each vacation is equal
to k slots in the first Markov chain. If the sum of U e and the
service time of the packets arriving during the vacation is
less than or equal to M slots, U e and the service time will be
completely served during the service period. If the sum of U e

and the service time of the packets arriving during the vaca-
tion exceeds M slots, only M slots out of U e and the service
time will be served during the service period. Let λv(n, i) be
the probability that the service time of the packets arriving
during a vacation is i slots and the length of the vacation is
n slots, and let λs(i) be the probability that the service time
of the packets arriving during a service period of M slots
is i slots. If the lengths of each vacation and each service
period are independent and identically distributed, λv(n, i)
and λs(i) can be calculated with the given λ(i) and b(i). The
state transition probabilities from uk to uk′ can be calculated:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

n=0

v(n){λs(0)

M−k∑

i=0

λv(n, i)} if k′ = 0

∞∑

n=0

v(n){λs(k
′)

M−k∑

i=0

λv(n, i) +
M+k′−k∑

j=max(0,M−k+1)

λs(M + k′ − k − j)λv(n, j)} if k′ > 0.

(15)

Let Pu denotes the vector version of uk and let Tu denotes
the transition probability matrix constructed from the state
transition probabilities. u0 is initialized with one and uk is
initialized with zero for k = 1, 2, 3, . . .. Essentially, a Mar-
kov chain is a stochastic process with the Markov property,
meaning that the next state depends only on the current state
but not on any past states. Therefore, our method recursively
updates Pu through computing Pu = Pu Tu until Pu con-
verges. Finally, E[U e] can be calculated by

∑∞
k=0 ukk, and

E[P] and E[W ] can be calculated by (13) and E[W ] =
E[P]/λ, respectively.

Fig. 3 The flowchart of the
computational method with the
nested loop structure

Note that the probability distribution of v(n) may depend
on the packet scheduling scheme used in the system. The
computational method considers the scheduling schemes in
which the probability distributions of v(n) and uk depend on
each other. Let v(n) denotes the steady-state probability that
the length of vacation is equal to n slots in the second Markov
chain. Let Pv denotes the vector version of v(n), and let Tv

be the transition probability matrix that is determined by the
packet scheduling scheme used in the system. v(δ) is initial-
ized with one and v(n) is initialized with zero for n �= δ. The
computational method uses a nested loop structure to recur-
sively updates Pu and Pv at the same time and consists of the
steps as shown in Fig. 3. Since the probability distributions of
v(n) and uk depend on each other, the computational method
uses Tu to confirm if the two Markov chains converge at the
same time.

We present a method to calculate the transition probabil-
ities of v(n) and construct the transition probability matrix
Tv for RREQS. The method is also effective for similar RR
scheduling schemes. The method constructs Tv by multi-
plying (N − 1) transition probability matrices because the
transition probabilities of v(n) are determined by uk of the
other (N − 1) VOQs in the same input. If all the other
VOQs are non-empty, the length of the next vacation will be
(N − 1)T + δ slots; if one of the other VOQs is empty and
there is no packet arriving during the vacation, the one will
be skipped and the next vacation will be cut short by T slots.
For example, a VOQ has waited during a vacation and the
length of the vacation is (N − 1 − l)T + δ slots, where
l < (N − 1). The length of the next vacation will be cut
short to (N −2− l)T + δ if the first one of the other VOQs is
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empty and there is no packet arriving during the vacation; the
length of the next vacation will be kept if the first one of the
other VOQs is non-empty or there are packets arriving dur-
ing the vacation. Therefore, the transition probability from
v(nT + δ) to v

(
n′T + δ

)
in the first (N − 1 − l) transition

probability matrices can be computed by
⎧
⎨

⎩

1 − u0λv(nT + δ, 0) if n′ = n > 0
u0λv(nT + δ, 0) if n′ = n − 1 � 0
0 otherwise

(16)

Since n′ must be greater than or equal to zero, the transi-
tion probability from v(nT + δ) to v(n′T + δ) in the last l
transition probability matrices is computed by
⎧
⎨

⎩

1 − u0λv(nT + δ, 0) if n′ = n + 1 � (N − 1)

u0λv(nT + δ, 0) if n′ = n < (N − 1)

0 otherwise
(17)

Let D(l) denotes a diagonal matrix where all elements are
equal to zero but the element, dl,l , is equal to one, and
let T ′(m)

v (l) denote the mth transition probability matrix,
where the targeted VOQ has waited during a vacation and
the length of the vacation is (N − 1 − l)T + δ slots, con-
structed from (16) and (17). In summary, Tv can be com-
puted by

∑N−1
l=0 D(l)

∏N−1
m=1 T ′(m)

v (l) for RREQS, and then
E[U e], E[P], and E[W ] can be computed by the computa-
tional method with the nested loop structure.

4 Numerical analysis

In this section, we employ our analytical and simulation mod-
els to study reconfiguration optimization for the input-buf-
fered optical packet switches. First, we present our simulation
model. Second, we validate our analytical model by compar-
ing the analytical and simulation results. Last, we examine
how various network parameters affect the optimal choice
of the reconfiguration frequency for minimizing the mean
waiting time E[W ] of packets.

4.1 Simulation model

Our simulation model uses an input-buffered switch, as
shown in Fig. 1 and a traffic model. The input-buffered switch
has been presented in Sect. 2. The traffic model is composed
of an arrival process and a service time distribution. The
arrival process follows the binomial distribution in which
the number of packets that arrive during a slot is i with prob-
ability

(X
i

)
( λ

X )i (1− λ
X )X−i , and the service time distribution

follows the geometric distribution in which the probability
of success on each trial is p and the mean service time b of
each packet is 1

p .
Furthermore, our simulation model uses BRR, iSLIP [18],

and RREQS to study reconfiguration optimization and uses

RREQS to verify our analytical model. v(n) and uk of
RREQS are computed by the computational method that is
presented in Sect. 3.3.

4.2 Verification of the analytical model

In this subsection, we validate our analytical mode by com-
paring the analytical results with the simulation results. We
assume N = 8, M = 5, and δ = 1 and calculate E[U e] and
E[W ] for a series of ρ ranging from 0.1 to 0.8. Figures 4 and
5 illustrate E[U e] and E[W ] of the analytical and simulation
results in RREQS with various X and b. They show that the
analytical results well match the simulation results in terms
of E[U e] and E[W ]. Obviously, the analytical results also
well match the simulation results in terms of E[P] because
E[W ] = E[P]/λ. Therefore, the simulation results verify
the accuracy of our analytical model.

Note that X does not directly affect E[W ], but b does,
according to (14). Obviously, E[PGeoX /G/1] increases with
b and ρ and ρ also increases with b. Figure 5 shows the con-
sistent results with this situation. Although the second factor
of the r.h.s. of (14), E[U e]/b, decreases as b increases, Figs.
4 and 5 also show that E[U e] is far smaller than E[W ].
Therefore, E[W ] significantly increases with ρ and b.

Furthermore, we fix ρ and calculate E[W ] for a series of
T ranging from 2 to 16 slots. Figures 6, 7, and 8 illustrate
E[W ] of the analytical and simulation results in RREQS with
various X, b, and ρ. They show that the analytical results still
well match the simulation results.

4.3 Reconfiguration optimization

Now, we intend to find the optimal reconfiguration frequency
Fopt, which minimizes E[W ], through numerical analysis.
First, we fix ρ and δ = 1 and calculate E[W ] for a series of
the reconfiguration frequency F ranging from 1/16 to 1/2
slots, where T ranges from 16 to 2 slots, to find Fopt, and
then, we use surface charts of Fopt to further investigate how
to determine Fopt under a wide range of network configura-
tions. Second, we compare simulation results of BRR, iSLIP,
and RREQS. This comparison helps us find out the difference
between the effects of a RR scheduling scheme in which all
VOQs are served and a RR scheduling scheme in which only
non-empty VOQs are served on E[W ] and Fopt. Finally, we
make several important observations on Fopt.

In the case of ρ = 0.3 and N = 8, Fig. 6 shows that
Fopt = 1/4 when b = 4 and shows that Fopt = 1/5 when
b = 8; X does not obviously affect Fopt. In the case of
ρ = 0.5 and N = 8, Fig. 7 shows that Fopt = 1/4 when
b = 4. It also shows that Fopt = 1/6 when b = 8; X still
does not obviously affect Fopt. Figures 6 and 7 show that X
slightly affects Fopt and Fopt decreases as b and ρ increase.
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Fig. 4 U e(u) of analysis and
simulation results in RREQS
with various X and b

Fig. 5 E[W ] of analysis and
simulation results in RREQS
with various X and b

Figure 8 illustrates E[W ] of the analytical and sim-
ulation results in RREQS with various X and b under
ρ = 0.5 and N = 12. Figure 7 shows that Fopt = 1/4
when b = 4 and N = 8, and Fig. 8 shows that Fopt = 1/5
when b = 4 and N = 12. Figures 7 and 8 show that Fopt

decreases as N increases. This is because the length V of each
vacation in RREQS is determined by uk of the other (N −1)

VOQs in the same input. If all the other VOQs are non-empty,
the length of the next vacation will be (N − 1)T + δ slots.
According to (13) and (14), E[P] and E[W ] increase with
V and V increases with N . When E[W ] increases, we need

a larger T and a smaller F to reduce E[U e] for minimizing
E[W ]. However, V also increases with T . Thus, Fopt only
slightly decreases as N increases.

We use surface charts of Fopt to further examine how var-
ious network parameters affect Fopt under a wide range of
network configurations. Figure 9 is a surface chart of Fopt

for various ρ and b. It shows that Fopt decreases as b and
ρ increase and shows that Fopt is smaller than or equal to
one-third. For example, when b = 2 and ρ = 0.1, Fopt are
equal to 1/3. When b = 2 and ρ = 0.7, Fopt is equal to
1/6. When b = 8 and ρ = 0.7, Fopt are equal to 1/7. On
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Fig. 6 E[W ] of analysis and
simulation results in RREQS
with various X and b under
ρ = 0.3

Fig. 7 E[W ] of analysis and
simulation results in RREQS
with various X and b under
ρ = 0.5

the other hand, Fig. 10 is a surface chart of ρopt for various
ρ and X . It shows that X has a minor effect on Fopt. These
surface charts confirm our observations made in the previous
two paragraphs.

Next, we compare the simulation results of BRR, iSLIP,
and RREQS. In the case of ρ = 0.3 and N = 8, Fig. 11
shows that iSLIP and RREQS outperform BRR in the case of
E[W ]. This is because the RR scheduling schemes in which
only non-empty VOQs are served can reduce unused band-
width due to empty VOQs. Furthermore, Fig. 11 shows that
Fopt of BRR is equal to 1/6 when b = 4 and shows that Fopt

of iSLIP and RREQS are equal to 1/4. Therefore, Fopt in the
RR scheduling schemes in which only non-empty VOQs are
served is greater than the one of BRR in which all VOQs are
served.

However, iSLIP has a contention problem that several out-
puts may grant the requests of the same input but only an
output will be accepted by the input. In the case of ρ = 0.5
and N = 8, Fig. 12 shows that E[W ] in iSLIP may be larger
than the one in BRR when ρ increases. By contrast, RREQS
still outperforms BRR in the case of E[W ] because RREQS
does not have the contention problem.
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Fig. 8 E[W ] of analysis and
simulation results in RREQS
with various X and b under
ρ = 0.5 and N = 12

Fig. 9 A surface chart of Fopt for various ρ and b

In summary, the reconfiguration frequency can be opti-
mized based on the following observations for minimizing
E[W ]

1. Fopt slightly decreases as N increases;
2. Fopt decreases as b and ρ increase;
3. Fopt in the RR scheduling scheme in which only non-

empty VOQs are served is greater than that of BRR in
which all VOQs are served.

We can dynamically adapt the value of Fopt based on the
three observations listed above to minimize E[W ]. Fig-
ure 13 shows that RREQS and iSLIP with Fopt outperform
RREQS and iSLIP with F = 1/10 in the case of E[W ],

Fig. 10 A surface chart of Fopt for various ρ and X

respectively. Under a light traffic ρ = 0.1 and b = 8, RREQS
with Fopt achieves the mean waiting time of packets 28% less
than RREQS with F = 1/10. Even in the case of a heavy
traffic load ρ = 0.7, the mean waiting time of packets of
RREQS with Fopt is still 3% less than that of RREQS with
F = 1/10.

5 Conclusions

This work has presented an analytical model to analyze the
performance of the input-buffered packet switches for min-
imizing the mean waiting time of packets. The analytical
model is based on a fixed-time service system with vacations
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Fig. 11 E[W ] of analysis and
simulation results in BRR,
iSLIP, and RREQS with various
X and b under ρ = 0.3

Fig. 12 E[W ] of analysis and
simulation results in BRR,
iSLIP, and RREQS with various
X and b under ρ = 0.5

and employs a computational method with a nested loop
structure to calculate the mean waiting time and the aver-
age number of the packets in the system. Our simulation
results confirm that the proposed model is accurate and suit-
able for various scheduling schemes and network configura-
tions.

Through numerical analysis, we find out the individ-
ual effects of various network parameters and several
scheduling schemes on the performance and optimize the
reconfiguration frequency to reduce the mean waiting time

of packets. This quantitative work demonstrates that RR
scheduling schemes with the optimal reconfiguration fre-
quency can effectively reduce the mean waiting time of
packets. The mean service time and the traffic load are key
parameters. The optimal reconfiguration frequency decreases
as the mean service time and the traffic load increase and
slightly decreases as the number of ports increases. The opti-
mal reconfiguration frequency in the RR scheduling schemes
in which only non-empty VOQs are served is greater than that
of BRR in which all VOQs are served.
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Fig. 13 E[W ] of analysis and
simulation results in the RR
F = 1/5
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