12 research outputs found

    Binary and Ternary Quasi-perfect Codes with Small Dimensions

    Full text link
    The aim of this work is a systematic investigation of the possible parameters of quasi-perfect (QP) binary and ternary linear codes of small dimensions and preparing a complete classification of all such codes. First we give a list of infinite families of QP codes which includes all binary, ternary and quaternary codes known to is. We continue further with a list of sporadic examples of binary and ternary QP codes. Later we present the results of our investigation where binary QP codes of dimensions up to 14 and ternary QP codes of dimensions up to 13 are classified.Comment: 4 page

    On upper bounds on the smallest size of a saturating set in a projective plane

    Full text link
    In a projective plane Πq\Pi _{q} (not necessarily Desarguesian) of order q,q, a point subset SS is saturating (or dense) if any point of ΠqS\Pi _{q}\setminus S is collinear with two points in S~S. Using probabilistic methods, the following upper bound on the smallest size s(2,q) s(2,q) of a saturating set in Πq\Pi _{q} is proved: \begin{equation*} s(2,q)\leq 2\sqrt{(q+1)\ln (q+1)}+2\thicksim 2\sqrt{q\ln q}. \end{equation*} We also show that for any constant c1c\ge 1 a random point set of size kk in Πq\Pi _{q} with 2c(q+1)ln(q+1)+2k<q21q+2q 2c\sqrt{(q+1)\ln(q+1)}+2\le k<\frac{q^{2}-1}{q+2}\thicksim q is a saturating set with probability greater than 11/(q+1)2c22.1-1/(q+1)^{2c^{2}-2}. Our probabilistic approach is also applied to multiple saturating sets. A point set SΠqS\subset \Pi_{q} is (1,μ)(1,\mu)-saturating if for every point QQ of ΠqS\Pi _{q}\setminus S the number of secants of SS through QQ is at least μ\mu , counted with multiplicity. The multiplicity of a secant \ell is computed as (#(S)2).{\binom{{\#(\ell \,\cap S)}}{{2}}}. The following upper bound on the smallest size sμ(2,q)s_{\mu }(2,q) of a (1,μ)(1,\mu)-saturating set in Πq\Pi_{q} is proved: \begin{equation*} s_{\mu }(2,q)\leq 2(\mu +1)\sqrt{(q+1)\ln (q+1)}+2\thicksim 2(\mu +1)\sqrt{ q\ln q}\,\text{ for }\,2\leq \mu \leq \sqrt{q}. \end{equation*} By using inductive constructions, upper bounds on the smallest size of a saturating set (as well as on a (1,μ)(1,\mu)-saturating set) in the projective space PG(N,q)PG(N,q) are obtained. All the results are also stated in terms of linear covering codes.Comment: 15 pages, 24 references, misprints are corrected, Sections 3-5 and some references are adde

    Grassmannians of codes

    Get PDF
    Consider the point line-geometry Pt(n,k){\mathcal P}_t(n,k) having as points all the [n,k][n,k]-linear codes having minimum dual distance at least t+1t+1 and where two points XX and YY are collinear whenever XYX\cap Y is a [n,k1][n,k-1]-linear code having minimum dual distance at least t+1t+1. We are interested in the collinearity graph Λt(n,k)\Lambda_t(n,k) of Pt(n,k).{\mathcal P}_t(n,k). The graph Λt(n,k)\Lambda_t(n,k) is a subgraph of the Grassmann graph and also a subgraph of the graph Δt(n,k)\Delta_t(n,k) of the linear codes having minimum dual distance at least t+1t+1 introduced in~[M. Kwiatkowski, M. Pankov, On the distance between linear codes, Finite Fields Appl. 39 (2016), 251--263, doi:https://doi.org/10.1016/j.ffa.2016.02.004, arXiv:1506.00215]. We shall study the structure of Λt(n,k)\Lambda_t(n,k) in relation to that of Δt(n,k)\Delta_t(n,k) and we will characterize the set of its isolated vertices. We will then focus on Λ1(n,k)\Lambda_1(n,k) and Λ2(n,k)\Lambda_2(n,k) providing necessary and sufficient conditions for them to be connected
    corecore