3,634 research outputs found

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Robots for Exploration, Digital Preservation and Visualization of Archeological Sites

    Get PDF
    Monitoring and conservation of archaeological sites are important activities necessary to prevent damage or to perform restoration on cultural heritage. Standard techniques, like mapping and digitizing, are typically used to document the status of such sites. While these task are normally accomplished manually by humans, this is not possible when dealing with hard-to-access areas. For example, due to the possibility of structural collapses, underground tunnels like catacombs are considered highly unstable environments. Moreover, they are full of radioactive gas radon that limits the presence of people only for few minutes. The progress recently made in the artificial intelligence and robotics field opened new possibilities for mobile robots to be used in locations where humans are not allowed to enter. The ROVINA project aims at developing autonomous mobile robots to make faster, cheaper and safer the monitoring of archaeological sites. ROVINA will be evaluated on the catacombs of Priscilla (in Rome) and S. Gennaro (in Naples)

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles

    Get PDF
    A leader-follower formation driving algorithm developed for control of heterogeneous groups of unmanned micro aerial and ground vehicles stabilized under a top-view relative localization is presented in this paper. The core of the proposed method lies in a novel avoidance function, in which the entire 3D formation is represented by a convex hull projected along a desired path to be followed by the group. Such a representation of the formation provides non-collision trajectories of the robots and respects requirements of the direct visibility between the team members in environment with static as well as dynamic obstacles, which is crucial for the top-view localization. The algorithm is suited for utilization of a simple yet stable visual based navigation of the group (referred to as GeNav), which together with the on-board relative localization enables deployment of large teams of micro-scale robots in environments without any available global localization system. We formulate a novel Model Predictive Control (MPC) based concept that enables to respond to the changing environment and that provides a robust solution with team members' failure tolerance included. The performance of the proposed method is verified by numerical and hardware experiments inspired by reconnaissance and surveillance missions
    corecore