1,306 research outputs found

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    The Quantum PCP Conjecture

    Full text link
    The classical PCP theorem is arguably the most important achievement of classical complexity theory in the past quarter century. In recent years, researchers in quantum computational complexity have tried to identify approaches and develop tools that address the question: does a quantum version of the PCP theorem hold? The story of this study starts with classical complexity and takes unexpected turns providing fascinating vistas on the foundations of quantum mechanics, the global nature of entanglement and its topological properties, quantum error correction, information theory, and much more; it raises questions that touch upon some of the most fundamental issues at the heart of our understanding of quantum mechanics. At this point, the jury is still out as to whether or not such a theorem holds. This survey aims to provide a snapshot of the status in this ongoing story, tailored to a general theory-of-CS audience.Comment: 45 pages, 4 figures, an enhanced version of the SIGACT guest column from Volume 44 Issue 2, June 201

    Quantum Cellular Automata

    Full text link
    Quantum cellular automata (QCA) are reviewed, including early and more recent proposals. QCA are a generalization of (classical) cellular automata (CA) and in particular of reversible CA. The latter are reviewed shortly. An overview is given over early attempts by various authors to define one-dimensional QCA. These turned out to have serious shortcomings which are discussed as well. Various proposals subsequently put forward by a number of authors for a general definition of one- and higher-dimensional QCA are reviewed and their properties such as universality and reversibility are discussed.Comment: 12 pages, 3 figures. To appear in the Springer Encyclopedia of Complexity and Systems Scienc

    The classical-quantum boundary for correlations: discord and related measures

    Full text link
    One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are amongst the more actively-studied topics of quantum information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here we review different notions of classical and quantum correlations quantified by quantum discord and other related measures. In the first half, we review the mathematical properties of the measures of quantum correlations, relate them to each other, and discuss the classical-quantum division that is common among them. In the second half, we show that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. We show that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.Comment: Close to the published versio

    Quantum Zeno Features of Bistable Perception

    Get PDF
    A generalized quantum theoretical framework, not restricted to the validity domain of standard quantum physics, is used to model the dynamics of the bistable perception of ambiguous visual stimuli. The central idea is to treat the perception process in terms of the evolution of an unstable two-state quantum system, yielding a quantum Zeno type of effect. A quantitative relation between the involved time scales is theoretically derived. This relation is found to be satisfied by empirically obtained cognitive time scales relevant for bistable perception.Comment: 19 pages, 1 figur

    Computação quântica : autômatos, jogos e complexidade

    Get PDF
    Orientador: Arnaldo Vieira MouraDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Desde seu surgimento, Teoria da Computação tem lidado com modelos computacionais de maneira matemática e abstrata. A noção de computação eficiente foi investigada usando esses modelos sem procurar entender as capacidades e limitações inerentes ao mundo físico. A Computação Quântica representa uma ruptura com esse paradigma. Enraizada nos postulados da Mecânica Quântica, ela é capaz de atribuir um sentido físico preciso à computação segundo nosso melhor entendimento da natureza. Esses postulados dão origem a propriedades fundamentalmente diferentes, uma em especial, chamada emaranhamento, é de importância central para computação e processamento de informação. O emaranhamento captura uma noção de correlação que é única a modelos quânticos. Essas correlações quânticas podem ser mais fortes do que qualquer correlação clássica estando dessa forma no coração de algumas capacidades quânticas que vão além do clássico. Nessa dissertação, nós investigamos o emaranhamento da perspectiva da complexidade computacional quântica. Mais precisamente, nós estudamos uma classe bem conhecida, definida em termos de verificação de provas, em que um verificador tem acesso à múltiplas provas não emaranhadas (QMA(k)). Assumir que as provas não contêm correlações quânticas parece ser uma hipótese não trivial, potencialmente fazendo com que essa classe seja maior do que aquela em que há apenas uma prova. Contudo, encontrar cotas de complexidade justas para QMA(k) permanece uma questão central sem resposta por mais de uma década. Nesse contexto, nossa contribuição é tripla. Primeiramente, estudamos classes relacionadas mostrando como alguns recursos computacionais podem afetar seu poder de forma a melhorar a compreensão a respeito da própria classe QMA(k). Em seguida, estabelecemos uma relação entre Probabilistically Checkable Proofs (PCP) clássicos e QMA(k). Isso nos permite recuperar resultados conhecidos de maneira unificada e simplificada. Para finalizar essa parte, mostramos que alguns caminhos para responder essa questão em aberto estão obstruídos por dificuldades computacionais. Em um segundo momento, voltamos nossa atenção para modelos restritos de computação quântica, mais especificamente, autômatos quânticos finitos. Um modelo conhecido como Two-way Quantum Classical Finite Automaton (2QCFA) é o objeto principal de nossa pesquisa. Seu estudo tem o intuito de revelar o poder computacional provido por memória quântica de dimensão finita. Nos estendemos esse autômato com a capacidade de colocar um número finito de marcadores na fita de entrada. Para qualquer número de marcadores, mostramos que essa extensão é mais poderosa do que seus análogos clássicos determinístico e probabilístico. Além de trazer avanços em duas linhas complementares de pesquisa, essa dissertação provê uma vasta exposição a ambos os campos: complexidade computacional e autômatosAbstract: Since its inception, Theoretical Computer Science has dealt with models of computation primarily in a very abstract and mathematical way. The notion of efficient computation was investigated using these models mainly without seeking to understand the inherent capabilities and limitations of the actual physical world. In this regard, Quantum Computing represents a rupture with respect to this paradigm. Rooted on the postulates of Quantum Mechanics, it is able to attribute a precise physical notion to computation as far as our understanding of nature goes. These postulates give rise to fundamentally different properties one of which, namely entanglement, is of central importance to computation and information processing tasks. Entanglement captures a notion of correlation unique to quantum models. This quantum correlation can be stronger than any classical one, thus being at the heart of some quantum super-classical capabilities. In this thesis, we investigate entanglement from the perspective of quantum computational complexity. More precisely, we study a well known complexity class, defined in terms of proof verification, in which a verifier has access to multiple unentangled quantum proofs (QMA(k)). Assuming the proofs do not exhibit quantum correlations seems to be a non-trivial hypothesis, potentially making this class larger than the one in which only a single proof is given. Notwithstanding, finding tight complexity bounds for QMA(k) has been a central open question in quantum complexity for over a decade. In this context, our contributions are threefold. Firstly, we study closely related classes showing how computational resources may affect its power in order to shed some light on \QMA(k) itself. Secondly, we establish a relationship between classical Probabilistically Checkable Proofs and QMA(k) allowing us to recover known results in unified and simplified way, besides exposing the interplay between them. Thirdly, we show that some paths to settle this open question are obstructed by computational hardness. In a second moment, we turn our attention to restricted models of quantum computation, more specifically, quantum finite automata. A model known as Two-way Quantum Classical Finite Automaton (2QCFA) is the main object of our inquiry. Its study is intended to reveal the computational power provided by finite dimensional quantum memory. We extend this automaton with the capability of placing a finite number of markers in the input tape. For any number of markers, we show that this extension is more powerful than its classical deterministic and probabilistic analogues. Besides bringing advances to these two complementary lines of inquiry, this thesis also provides a vast exposition to both subjects: computational complexity and automata theoryMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    corecore