12 research outputs found

    Staircase polygons: moments of diagonal lengths and column heights

    Full text link
    We consider staircase polygons, counted by perimeter and sums of k-th powers of their diagonal lengths, k being a positive integer. We derive limit distributions for these parameters in the limit of large perimeter and compare the results to Monte-Carlo simulations of self-avoiding polygons. We also analyse staircase polygons, counted by width and sums of powers of their column heights, and we apply our methods to related models of directed walks.Comment: 24 pages, 7 figures; to appear in proceedings of Counting Complexity: An International Workshop On Statistical Mechanics And Combinatorics, 10-15 July 2005, Queensland, Australi

    Area limit laws for symmetry classes of staircase polygons

    Full text link
    We derive area limit laws for the various symmetry classes of staircase polygons on the square lattice, in a uniform ensemble where, for fixed perimeter, each polygon occurs with the same probability. This complements a previous study by Leroux and Rassart, where explicit expressions for the area and perimeter generating functions of these classes have been derived.Comment: 18 pages, 3 figure

    Patterns in random permutations avoiding the pattern 132

    Full text link
    We consider a random permutation drawn from the set of 132-avoiding permutations of length nn and show that the number of occurrences of another pattern \sigma has a limit distribution, after scaling by n()/2n^{\lambda(\sigma)/2} where ()\lambda(\sigma) is the length of \sigma plus the number of descents. The limit is not normal, and can be expressed as a functional of a Brownian excursion. Moments can be found by recursion.Comment: 32 page

    Limit laws for discrete excursions and meanders and linear functional equations with a catalytic variable

    Full text link
    We study limit distributions for random variables defined in terms of coefficients of a power series which is determined by a certain linear functional equation. Our technique combines the method of moments with the kernel method of algebraic combinatorics. As limiting distributions the area distributions of the Brownian excursion and meander occur. As combinatorial applications we compute the area laws for discrete excursions and meanders with an arbitrary finite set of steps and the area distribution of column convex polyominoes. As a by-product of our approach we find the joint distribution of area and final altitude for meanders with an arbitrary step set, and for unconstrained Bernoulli walks (and hence for Brownian Motion) the joint distribution of signed areas and final altitude. We give these distributions in terms of their moments.Comment: 33 pages, 1 figur

    Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas

    Full text link
    This survey is a collection of various results and formulas by different authors on the areas (integrals) of five related processes, viz.\spacefactor =1000 Brownian motion, bridge, excursion, meander and double meander; for the Brownian motion and bridge, which take both positive and negative values, we consider both the integral of the absolute value and the integral of the positive (or negative) part. This gives us seven related positive random variables, for which we study, in particular, formulas for moments and Laplace transforms; we also give (in many cases) series representations and asymptotics for density functions and distribution functions. We further study Wright's constants arising in the asymptotic enumeration of connected graphs; these are known to be closely connected to the moments of the Brownian excursion area. The main purpose is to compare the results for these seven Brownian areas by stating the results in parallel forms; thus emphasizing both the similarities and the differences. A recurring theme is the Airy function which appears in slightly different ways in formulas for all seven random variables. We further want to give explicit relations between the many different similar notations and definitions that have been used by various authors. There are also some new results, mainly to fill in gaps left in the literature. Some short proofs are given, but most proofs are omitted and the reader is instead referred to the original sources.Comment: Published at http://dx.doi.org/10.1214/07-PS104 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotics and scaling analysis of 2-dimensional lattice models of vesicles and polymers

    Get PDF
    PhDThe subject of this thesis is the asymptotic behaviour of generating functions of different combinatorial models of two-dimensional lattice walks and polygons, enumerated with respect to different parameters, such as perimeter, number of steps and area. These models occur in various applications in physics, computer science and biology. In particular, they can be seen as simple models of biological vesicles or polymers. Of particular interest is the singular behaviour of the generating functions around special, so-called multicritical points in their parameter space, which correspond physically to phase transitions. The singular behaviour around the multicritical point is described by a scaling function, alongside a small set of critical exponents. Apart from some non-rigorous heuristics, our asymptotic analysis mainly consists in applying the method of steepest descents to a suitable integral expression for the exact solution for the generating function of a given model. The similar mathematical structure of the exact solutions of the different models allows for a unified treatment. In the saddle point analysis, the multicritical points correspond to points in the parameter space at which several saddle points of the integral kernels coalesce. Generically, two saddle points coalesce, in which case the scaling function is expressible in terms of the Airy function. As we will see, this is the case for Dyck and Schr枚der paths, directed column-convex polygons and partially directed self-avoiding walks. The result for Dyck paths also allows for the scaling analysis of Bernoulli meanders (also known as ballot paths). We then construct the model of deformed Dyck paths, where three saddle points coalesce in the corresponding integral kernel, thereby leading to an asymptotic expression in terms of a bivariate, generalised Airy integral.Universit盲t Erlangen-N眉rnberg Queen Mary Postgraduate Research Fun
    corecore