12,389 research outputs found

    On Proximity-Oblivious Testing

    Full text link

    Testing Linear Inequalities of Subgraph Statistics

    Get PDF
    Property testers are fast randomized algorithms whose task is to distinguish between inputs satisfying some predetermined property ? and those that are far from satisfying it. Since these algorithms operate by inspecting a small randomly selected portion of the input, the most natural property one would like to be able to test is whether the input does not contain certain forbidden small substructures. In the setting of graphs, such a result was obtained by Alon et al., who proved that for any finite family of graphs ?, the property of being induced ?-free (i.e. not containing an induced copy of any F ? ?) is testable. It is natural to ask if one can go one step further and prove that more elaborate properties involving induced subgraphs are also testable. One such generalization of the result of Alon et al. was formulated by Goldreich and Shinkar who conjectured that for any finite family of graphs ?, and any linear inequality involving the densities of the graphs F ? ? in the input graph, the property of satisfying this inequality can be tested in a certain restricted model of graph property testing. Our main result in this paper disproves this conjecture in the following strong form: some properties of this type are not testable even in the classical (i.e. unrestricted) model of graph property testing. The proof deviates significantly from prior non-testability results in this area. The main idea is to use a linear inequality relating induced subgraph densities in order to encode the property of being a pseudo-random graph

    GSF-locality is not sufficient for proximity-oblivious testing

    Get PDF
    In Property Testing, proximity-oblivious testers (POTs) form a class of particularly simple testing algorithms, where a basic test is performed a number of times that may depend on the proximity parameter, but the basic test itself is independent of the proximity parameter. In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph properties that allow constant-query proximity-oblivious testing in the bounded-degree model are precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property that satisfies the non-propagation condition. It is left open whether the non-propagation condition is necessary. Indeed, calling properties expressible as a generalised subgraph freeness property GSF-local properties, they ask whether all GSF-local properties are non-propagating. We give a negative answer by exhibiting a property of graphs that is GSF-local and propagating. Hence in particular, our property does not admit a POT, despite being GSF-local. We prove our result by exploiting a recent work of the authors which constructed a first-order (FO) property that is not testable [SODA 2021], and a new connection between FO properties and GSF-local properties via neighbourhood profiles

    On Testability of First-Order Properties in Bounded-Degree Graphs and Connections to Proximity-Oblivious Testing

    Full text link
    We study property testing of properties that are definable in first-order logic (FO) in the bounded-degree graph and relational structure models. We show that any FO property that is defined by a formula with quantifier prefix \exists^*\forall^* is testable (i.e., testable with constant query complexity), while there exists an FO property that is expressible by a formula with quantifier prefix \forall^*\exists^* that is not testable. In the dense graph model, a similar picture is long known (Alon, Fischer, Krivelevich, Szegedy, Combinatorica 2000), despite the very different nature of the two models. In particular, we obtain our lower bound by an FO formula that defines a class of bounded-degree expanders, based on zig-zag products of graphs. We expect this to be of independent interest. We then use our class of FO definable bounded-degree expanders to answer a long-standing open problem for proximity-oblivious testers (POTs). POTs are a class of particularly simple testing algorithms, where a basic test is performed a number of times that may depend on the proximity parameter, but the basic test itself is independent of the proximity parameter. In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph properties that are constant-query proximity-oblivious testable in the bounded-degree model are precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property that satisfies the non-propagation condition. It is left open whether the non-propagation condition is necessary. We give a negative answer by showing that our property is a GSF property which is propagating. Hence in particular, our property does not admit a POT. For this result we establish a new connection between FO properties and GSF-local properties via neighbourhood profiles.Comment: Preliminary version of this article appeared in SODA'21 (arXiv:2008.05800) and CCC'21 (arXiv:2105.08490

    A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

    Full text link
    Let P\mathcal{P} be a property of function Fpn{0,1}\mathbb{F}_p^n \to \{0,1\} for a fixed prime pp. An algorithm is called a tester for P\mathcal{P} if, given a query access to the input function ff, with high probability, it accepts when ff satisfies P\mathcal{P} and rejects when ff is "far" from satisfying P\mathcal{P}. In this paper, we give a characterization of affine-invariant properties that are (two-sided error) testable with a constant number of queries. The characterization is stated in terms of decomposition theorems, which roughly claim that any function can be decomposed into a structured part that is a function of a constant number of polynomials, and a pseudo-random part whose Gowers norm is small. We first give an algorithm that tests whether the structured part of the input function has a specific form. Then we show that an affine-invariant property is testable with a constant number of queries if and only if it can be reduced to the problem of testing whether the structured part of the input function is close to one of a constant number of candidates.Comment: 27 pages, appearing in STOC 2014. arXiv admin note: text overlap with arXiv:1306.0649, arXiv:1212.3849 by other author

    Partial tests, universal tests and decomposability

    Get PDF
    For a property P and a sub-property P', we say that P is P'-partially testable with q queries} if there exists an algorithm that distinguishes, with high probability, inputs in P' from inputs ε-far from P, using q queries. Some natural properties require many queries to test, but can be partitioned into a small number of subsets for which they are partially testable with very few queries, sometimes even a number independent of the input size. For properties over {0,1}, the notion of being thus partitionable ties in closely with Merlin-Arthur proofs of Proximity (MAPs) as defined independently in [14] a partition into r partially-testable properties is the same as a Merlin-Arthur system where the proof consists of the identity of one of the r partially-testable properties, giving a 2-way translation to an O(log r) size proof. Our main result is that for some low complexity properties a partition as above cannot exist, and moreover that for each of our properties there does not exist even a single sub-property featuring both a large size and a query-efficient partial test, in particular improving the lower bound set in [14]. For this we use neither the traditional Yao-type arguments nor the more recent communication complexity method, but open up a new approach for proving lower bounds. First, we use entropy analysis, which allows us to apply our arguments directly to 2-sided tests, thus avoiding the cost of the conversion in [14] from 2-sided to 1-sided tests. Broadly speaking we use "distinguishing instances" of a supposed test to show that a uniformly random choice of a member of the sub-property has "low entropy areas", ultimately leading to it having a low total entropy and hence having a small base set. Additionally, to have our arguments apply to adaptive tests, we use a mechanism of "rearranging" the input bits (through a decision tree that adaptively reads the entire input) to expose the low entropy that would otherwise not be apparent. We also explore the possibility of a connection in the other direction, namely whether the existence of a good partition (or MAP) can lead to a relatively query-efficient standard property test. We provide some preliminary results concerning this question, including a simple lower bound on the possible trade-off. Our second major result is a positive trade-off result for the restricted framework of 1-sided proximity oblivious tests. This is achieved through the construction of a "universal tester" that works the same for all properties admitting the restricted test. Our tester is very related to the notion of sample-based testing (for a non-constant number of queries) as defined by Goldreich and Ron in [13]. In particular it partially resolves an open problem raised by [13]

    On sample-based testers

    Get PDF
    The standard definition of property testing endows the tester with the ability to make arbitrary queries to “elements ” of the tested object. In contrast, sample-based testers only obtain independently distributed elements (a.k.a. labeled samples) of the tested object. While samplebased testers were defined by Goldreich, Goldwasser, and Ron (JACM 1998), most research in property testing is focused on query-based testers. In this work, we advance the study of sample-based property testers by providing several general positive results as well as by revealing relations between variants of this testing model. In particular: • We show that certain types of query-based testers yield sample-based testers of sublinear sample complexity. For example, this holds for a natural class of proximity oblivious testers. • We study the relation between distribution-free sample-based testers and one-sided error sample-based testers w.r.t the uniform distribution. While most of this work ignores the time complexity of testing, one part of it does focus on this aspect. The main result in this part is a sublinear-time sample-based tester for k-Colorability, for any k ≥ 2

    An exponential separation between MA and AM proofs of proximity

    Get PDF
    Interactive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as MA-proofs of Proximity (MAP), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as AM-proofs of Proximity (AMP), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both MAPs and AMPs is the total number of bits that the verifier observes - namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of MAPs and AMPs. Specifically, we exhibit an explicit and natural property Pi that admits an AMP with complexity O(log n), whereas any MAP for Pi has complexity Omega~(n^{1/4}), where n denotes the length of the input in bits. Our MAP lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting we show that AMPs can only be quadratically stronger than MAPs. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity
    corecore