761,053 research outputs found

    Multiplicative scale uncertainties in the unified approach for constructing confidence intervals

    Full text link
    We have investigated how uncertainties in the estimation of the detection efficiency affect the 90% confidence intervals in the unified approach for constructing confidence intervals. The study has been conducted for experiments where the number of detected events is large and can be described by a Gaussian probability density function. We also assume the detection efficiency has a Gaussian probability density and study the range of the relative uncertainties σϵ\sigma_\epsilon between 0 and 30%. We find that the confidence intervals provide proper coverage over a wide signal range and increase smoothly and continuously from the intervals that ignore scale uncertainties with a quadratic dependence on σϵ\sigma_\epsilon.Comment: 22 pages, 7 figures, 2 table

    Confidence intervals for average success probabilities

    Full text link
    We provide Buehler-optimal one-sided and some valid two-sided confidence intervals for the average success probability of a possibly inhomogeneous fixed length Bernoulli chain, based on the number of observed successes. Contrary to some claims in the literature, the one-sided Clopper-Pearson intervals for the homogeneous case are not completely robust here, not even if applied to hypergeometric estimation problems.Comment: Revised version for: Probability and Mathematical Statistics. Two remarks adde

    Explicit nonparametric confidence intervals for the variance with guaranteed coverage

    Get PDF
    In this paper, we provide a method for constructing confidence intervals for the variance that exhibit guaranteed coverage probability for any sample size, uniformly over a wide class of probability distributions. In contrast, standard methods achieve guaranteed coverage only in the limit for a fixed distribution or for any sample size over a very restrictive (parametric) class of probability distributions. Of course, it is impossible to construct effective confidence intervals for the variance without some restriction, due to a result of Bahadur and Savage (1956). However, it is possible if the observations lie in a fixed compact set. We also consider the case of lower confidence bounds without any support restriction. Our method is based on the behavior of the variance over distributions that lie within a Kolmogorov-Smirnov confidence band for the underlying distribution. The method is a generalization of an idea of Anderson (1967), who considered only the case of the mean; it applies to very general parameters, and particularly the variance. While typically it is not clear how to compute these intervals explicitly, for the special case of the variance we provide an algorithm to do so. Asymptotically, the length of the intervals is of order n -1/2 in probability), so that, while providing guaranteed coverage, they are not overly conservative. A small simulation study examines the finite sample behavior of the proposed intervals

    Qualitative Reachability for Open Interval Markov Chains

    Get PDF
    Interval Markov chains extend classical Markov chains with the possibility to describe transition probabilities using intervals, rather than exact values. While the standard formulation of interval Markov chains features closed intervals, previous work has considered also open interval Markov chains, in which the intervals can also be open or half-open. In this paper we focus on qualitative reachability problems for open interval Markov chains, which consider whether the optimal (maximum or minimum) probability with which a certain set of states can be reached is equal to 0 or 1. We present polynomial-time algorithms for these problems for both of the standard semantics of interval Markov chains. Our methods do not rely on the closure of open intervals, in contrast to previous approaches for open interval Markov chains, and can characterise situations in which probability 0 or 1 can be attained not exactly but arbitrarily closely.Comment: Full version of a paper published at RP 201

    Recurrence interval analysis of high-frequency financial returns and its application to risk estimation

    Full text link
    We investigate the probability distributions of the recurrence intervals τ\tau between consecutive 1-min returns above a positive threshold q>0q>0 or below a negative threshold q<0q<0 of two indices and 20 individual stocks in China's stock market. The distributions of recurrence intervals for positive and negative thresholds are symmetric, and display power-law tails tested by three goodness-of-fit measures including the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cram\'er-von Mises criterion. Both long-term and shot-term memory effects are observed in the recurrence intervals for positive and negative thresholds qq. We further apply the recurrence interval analysis to the risk estimation for the Chinese stock markets based on the probability Wq(Δt,t)W_q(\Delta{t},t), Value-at-Risk (VaR) analysis and VaR analysis conditioned on preceding recurrence intervals.Comment: 17 pages, 10 figures, 1 tabl
    • …
    corecore