8 research outputs found

    On Probabilistic Strategies for Robot Tasks

    Get PDF
    Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation

    Corporate influence and the academic computer science discipline. [4: CMU]

    Get PDF
    Prosopographical work on the four major centers for computer research in the United States has now been conducted, resulting in big questions about the independence of, so called, computer science

    A machine learning based logic branching algorithm for automated assembly

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1991.Title as it appears in the M.I.T. Graduate List, Feb. 1991: A logic branching based machine learning algorithm for automated assembly.Includes bibliographical references (p. 95-100).by Erik Garth Vaaler.Sc.D

    Interaction and Intelligent Behavior

    Get PDF
    We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage

    Task level strategies for robots

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 211-225).by Sundar Narasimhan.Ph.D

    Contact sensing--a sequential decision approach to sensing manipulation contact features

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (p. 179-186).by Brian Scott Eberman.Ph.D

    Contact Sensing: A Sequential Decision Approach to Sensing Manipulation Contact

    Get PDF
    This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications
    corecore