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Abstract

A primary source of difficulty in automated assembly is the uncertainty in the
relative position of the parts being assembled. This thesis focuses on a machine
learning approach embedded in a logic branching structure to accomodate this
uncertainty in peg and hole assemblies. Force sensor information, responses to
recent moves, and results from previous assemblies are used as sources of infor-
mation for the learning algorithm. Machine learning is used to to generate the
branching decisions (production rules). Several heuristic assembly algorithms are
developed and tested both in a computer simulation and on a real system.
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Chapter 1

Introduction

1.1 Thesis Overview

1.1.1 General Problem Statement

For most applications, robotic assembly cells with the accuracy necessary to suc-

cessfully assemble parts using open loop path follcwing are far too expensive to

compete with human assembly workers. Possible solutions to this problem in-

clude: improving the cost to performance ratio of the robot, redesigning the parts

so that they can be assembled more easily, and installing sensors on the robot

and fixtures to gain access to information about the assembly that can be used

to correct for the non-ideal behavior of the robot. The latter approach is the one

taken in this thesis.

1.1.2 Goals

The principal goal of this work was to explore the feasibility of peg and hole

assembly using machine learning to learn the correct responses to contact forces
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encountered during assembly. A secondary goal was to determine the practical

limits of the accuracy of the mapping from contact forces to relatiie part positions.

1.1.3 Motivation

For most companies, assembly accounts for more than 50% of the cost of man-

ufacturing a product. For complex machines manufactured in small quantities,

the percentage can be much higher. Reducing the cost of assembly, particularly

for small production runs, is a primary motivation for research in automated as-

sembly. Another motivation for work in this area is the increasing need for work

in extremely hazardous environments, in particular: nuclear reactors, offshore

drilling platforms, undersea pipelines, and space station and satellite construction

and repair.

1.1.4 Scope

The work in this thesis is limited to the development of algorithms for the assembly

of two rigid, smooth parts (modeled as a planar peg and hole), one with known

orientation and the other with an orientation known to within ±5 degrees. The

work assumes that the peg has been located over the hole by some other method,

e.g. open loop position, vision, or tilt-and-drag.

1.1.5 Description of the Approach

The underlying structure to the approach presented in this thesis called logic

branching [Whitney 85]. Logic branching is a discrete approach to controlling

systems. Logic branching routines generally have the same structure as the IF-

THEN-ELSE, DO-WHILE, or DO-UNTIL statements have in computer program-

ming. For assembly applications, the arguments to the conditional part of the
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statement (the branch points) are usrally force conditions, e.g. DO (move in X)

UNTIL (Fx > 5). Force sensors, responses to recent moves, results from previous

assemblies, off-line calculations, and simulation results are some of the sources of

information that can be used to generate the branching decisions. The decisions

typically result in a move or series of moves that attempts to orient the parts so

that a particular set of contact forces is present. Often this is simply an attempt

to reduce contact forces under a certain threshold that will allow the system to

successfully continue the assembly.

Most software approaches to automated assembly produce algorithms that are

static and deterministic. The response to sensor information, if any sensors are

used, is explicitly set by the programmer. My work differs from this approach

in a fundamental way. It is a very simple form of machine learning. Here, a

program is written that "learns" the desirable responses to sensor inputs. An

advantage learning algorithms can have over analytical solutions to a problem is

the ability to correctly handle unexpected data. For example, an analysis of the

peg and hole geometry will show that there are combinations of forces and torques

that can not occur. All of the responses to these force/torque combinations could

be thrown out, and often are, since it is difficult to generate anything beyond

an error message in response to a combination of forces that a model says is

impossible. Modeling errors generally result in the real system encountering some

of the force combinations that the model has deemed to be impossible. On the

other hand, a learning algorithm can be set up so that no a priori decisions need

to be made about the possibility of certain force combinations. The system simply

does not ever encounter the impossible combinations. Unsupervised learning was

used because I felt that it produces a more robust system and a clearer picture

of the effect of the underlying structure of the learning algorithm than either

supervised learning or learning from examples. However, a real world application
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would certainly benefit from these other forms of learning.

Sufficient information is available from the force sensor, responses to recent

moves, and results from previous assemblies so that the approach does not require

a 3 dimensional model of the assembly process, i.e. the part and robot geometries,

kinematics, stiffnesses, etc.. The only information about the assembly that is

required is a nominal assembly path (NAP) and a termination condition. The

NAP is the path that would be followed if the assembly was attempted open loop.

For the common Z-stack assembly the NAP is simply a straight line parallel to

the Z axis and coincident with axis of the hole. I used a standard termination

condition: a force threshold along the NAP combined with a sensed position

indicating that the parts are in the neighborhood of being assembled. Position

errors in the system that make open loop assembly impossible are corrected by

the assembly algorithm. Force and incremental move data is collected during each

assembly and is used by the assembly algorithm during future assembly attempts

to improve the behavior of the system by encouraging the peg to move toward the

NAP.

1.2 Clarification of Terminology

This thesis contains some terminology that should be clearly defined at the outset,

either because it's use in technical papers has not been completely consistent or

because I coined it for use in my work.

Although the assembly algorithms do not use cartesian coordinates, I often use

them to describe the system errors and motions. I generally break them down into

translational (X,Y,Z) and rotational (9,$,',) terms. Torques on the rotational

degrees of freedom are called forces, e.g. Fe, to avoid confusion with the Tilt Axis

on the robot. The Tilt Axis, usually abbreviated to 'T axis', is used for motion
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in the O direction. I have borrowed the concept of state from control theory to

describe the relationship between the parts being assembled. A complete set of

states is any set of system parameters that unambiguously defines some aspect of

the system behavior. I use to ezist in a state and to visit a state interchangeably

when describing the robot/part system. The system behavior I want to control is

the relative position of the parts being assembled. To do this, I use a set of force

measurements and calculations using recent incremental moves made by the robot.

I have called some of these states force derivatives. The force derivative states are

the ratios of the change in measured force resulting from an incremental move by

the robot to that incremental move, e.g. AFz/AZ. I call the acquisition of state

information a state measurement. This may be simply a measurement of force or

Z position or it may be the calculation of a force derivative. The state information

is stored in an array for the simulation (for ease of inspection) and in a list for the

real hardware (for compact size). Each entry in the array/list has a set of indices

associated with it. These indices, called state values, are discretized, normalized

state measurements. Figure 1.1 shows an example of this transformation.

I created the acronym NAP (Nominal Assembly Path) that has the following

definition: the NAP is the assembly path that the robot would follow (successfully)

if the assembly cell and the parts were perfect, i.e. zero position errors in the robot

and fixtures and parts made to zero tolerance.

The work presented in this thesis was implemented on the MIT Precision As-

sembly Robot (MITPAR) which is shown in Figure 1.2. Design and construction

details for this machine are presented in Appendix A.
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Figure 1.1: The Transformation of State Measurements to State Values - The
range of the state measurements (±12 lbs) is normalized by mapping onto the
range of the state values (0 through 5). An analog force measurement is mapped
into one of the 6 discrete regions.

Fx state measurement (Ib)
-10 -5 0 5 10

0 1 2 3 4 5

Fx state value

Range of Fx = ±12 lbs Discritization level = 6
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Figure 1.2: The MIT Precision Assembly Robot (MITPAR) - The overall size of
the machine is 48 inches by 32 inches by 72 inches (X, Y, Z). The workspace is
approximately 24 inches by 12 inches by 18 inches (X, Y, Z).
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1.3 Review of Automated Assembly Techniques

1.3.1 DFA - Design for Assembly

DFA is an attempt to design parts so that they can be assembled in the presence

of system position errors as well as errors in the parts themselves [Boothroyd 80].

This area of research is mentioned here because the design of a part can have

a strong impact on the success of a particular assembly strategy. This coupling

has become more of an issue with the increase in interest in DFM (Design For

Manufacturing) because the application of DFM and DFA to a part often result

in conflicting design specifications.

A very successful DFA technique has been to chamfer the leading edge of

mating parts. Although simply cutting or molding a 45 degree chamfer into

parts is often done and generally results in increased assembly success rates, the

optimal size and shape of a chamfer is a function of many part and robot system

parameters. Chamfers and other DFA techniques are the subject of considerable

research [Whitney, Gustavson, Hennessey 83, Miller 88, Caine 90].

1.3.2 Part Locating Systems

Part locating systems typically use some type of sensor (often a camera) to deter-

mine the location of a part relative to the gripper or the other part [Grimson and

Lozano-Perez 83, Grimson 85]. [Gordon 86] contains a substantial literature re-

view of the topic. A common application is the assembly of printed circuit boards.

The robot picks up an electronic component, briefly holds it in front of a camera

or cameras, and the difference between the actual and desired part position is cal-

culated and corrected. Manufacturing errors and damage can also be checked for

at this time. The relative position of the parts is then known accurately enough
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so that the actual assembly can be performed open loop.

Another method for locating parts is to make the parts contact each other

in several places. The robot position during each of these contacts is then run

through an algorithm that produces the desired relative position information

[Simunovic 79, Gaston and Lozano-Perez 83, Grimson and Lozano-Perez 83].

[Schneiter 86] developed an algorithm that will generate the points where the

parts should be made to contact in order to reduce the relative position uncer-

tainty to a given value using the minimum number of contacts (and time). A

more passive approach uses a probabilistic estimator/filter to predict the likeliest

position and orientation of the parts based on data from previous assemblies, e.g.

an RCC with position sensors [Johnson and Hill 85, Seltzer 82].

1.3.3 Force Control - Path Planning

The goals of the work presented in this thesis should not be confused with the

goals of most of the research on path planning algorithms. A very significant

simplifying assumption was made in my thesis. That is, I assume that there is

free space between any position of the peg and hole and the NAP. The scope of

this thesis is much narrower than, for example, the path/motion planning work

of [Brooks 82a 82b 83, Lozano-Perez 84, Canny 84, Buckley 87]. Path planning

algorithms are often applicable to objects with arbitrarily large initial orientation

errors moving (without collision) through a space cluttered with arbitrarily many

objects. Many of these approaches are therefore suitable for navigation and ob-

stacle avoidance as well as for assembly. Work on path planning with friction

and uncertainty [Donald 87, Lozano-Perez, Mason and Taylor 84, Erdmann 84] is

particularly relevant to assembly.
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1.3.4 Force Control - Compliant Motion

This approach uses the geometric constraints imposed by the interacting parts to

guide the parts together[Inoue 74, Van Brussel and Simons 78, Raibert and Craig

81, Whitney 85, Peshkin 88]. Compliant motion assembly can be performed with

hardware or software. [Mason 81] develops models of assembly using position

control - the generalized spring, and velocity control - the generalized damper. For

any particular peg and hole geometry there is a combination of center of rota-

tion and translational and rotational stiffness that minimizes the insertion forces.

[Salisbury 80] presents an approach to implementing the desired stiffnesses and

centers of rotation in software. The RCC (Remote Center of Compliance) is a me-

chanical linkage that can be built with a wide range of these parameters [Whitney

82, Whitney and Rourke 86]. This work was extended to polygonal (e.g. rectan-

gular), unchamfered pegs by [Caine 85, Strip 87 88] and to dynamic applications

by [Asada and Kakumoto 88]. The RCC has several limitations. Any particular

set of stiffness and rotation parameters only works well for a limited set of part

geometries. The RCC requires relatively accurate knowledge of the rotational

orientation of the parts being assembled. A possible solution to these problems

is the implementation of an RCC or other compliant behavior in software [Hogan

84, Caine 85]. A combination of low system bandwidth (relative to the RCC) and

system nonlinearities such as backlash and friction on existing robots has severely

limited the performance of software compliance approaches [Eppinger 88]. The

development of micromanipulators and highly 'ackdrivable robots [Whitney and

Nevins 78, Asada and Youcef-Toumi 87, Townsend 88] should improve the perfor-

mance of these algorithms significantly.
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1.3.5 Force Control - Logic Branching

Logic branching routines generally have the same structure as the IF-THEN-

ELSE, DO-WHILE, or DO-UNTIL statements have in computer programming.

The arguments to the conditional part of the statement (the branch points) are

usually force conditions, e.g. DO (move in X) UNTIL (Fx > 5). Force sensors,

responses to recent moves, results from previous assemblies, off-line calculations,

and simulation results are some of the sources of information that can be used

to generate the branching decisions. The decisions typically result in a move or

series of moves that attempts to orient the parts so that a particular set of contact

forces is present. Often this is simply an attempt to reduce contact forces under a

certain threshold that will allow the system to successfully continue the assembly.

Although compliant motion can be implemented with a logic branching struc-

ture, the causality of logic branching is typically the opposite of the causality of

compliant motion. Given a certain position, a compliant motion routine typi-

cally imposes a set of forces on the parts in the assembly which produces relative

motion in the parts in the desired direction. Logic branching routines generally

establish contact between the parts being assembled and then, based on the mea-

sured forces and other information, make a move in the desired direction. Logic

branching based assembly can also be viewed as a quasi-static system equivalent

of digital feedback control of dynamic systems. The input to either system is a

set of sensor outputs sampled at discrete intervals that are monitoring the system

behavior. The output is an action that influences the system.
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1.3.6 Relevant Aspects of Machine Learning

Although the application of machine learning to mechanical systems is rare [Michie

and Chambers 68, Dufay and Latombe 84, Simons, et. al. 85, Connell and Ut-

goff 87], research on machine learning is a significant part of the overall research

effort in Artificial Intelligence [Michalsky, et.al. 83 86 90]. Using the terminol-

ogy of [Michalsky, et.al. 83], the learning algorithm presented in this thesis is a

production system that generates rules using unsupervised learning. The program

contains a function that drives active ezperimentation, i. e. interaction with the

environment instigated by the program. The acquired "knowledge" is represented

in the form of production rules. Production rules are condition-action pairs. In

this case a corrective move made in response to a particular set of forces, torques,

etc.. A machine learning algorithm can generally be divided into 4 components

[Smith, et. al. 77] : a Problem Generator, a Performance Element, a Critic, and

a Learning Element. The Problem Generator initializes and starts the system.

This corresponds directly with INITIALIZE-SYSTEM (block 1, Figure 2.3). The

Performance Element is the output of the algorithm and is responsible for gener-

ating a control action, in this case a move in X or O(block 3, Figure 2.3). The

Critic and the Learning Element are embedded in the assembly algorithm (block

6, Figure 2.3). The Critic evaluates the quality of the data and/or selects a subset

of "good" data from this set. This evaluation is used by the Learning Element to

transform the learned information into a form usable by the Performance Element.
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Formulation of the Assembly

Task

2.1 Geometry

Two nearly universal assumptions are made when using peg and hole models:

1) the hole is fixed; 2) one of the parts, usually the hole, is in a known orientation

(typically vertical). The first assumption, if incorrect, has no impact on most

assembly algorithms because only the relative position of the parts is the parameter

of concern. The second assumption may severely and unrealistically restrict the set

of possible part contact geometries. This can result in overly optimistic estimates

of the performance of a particular assembly algorithm. Significant errors in the

orientation and the position of both the peg and the hole very rarely occur in

assembly cells, but as more robotic assembly and repair work is done in loosely

structured environments (undersea, space) the need for assembly algorithms to

accommodate position errors in both parts will increase. The location of the force

sensor, generally assumed to be monitoring forces on the peg, has a significant
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impact on what force information that can be generated in the general assembly

case. For example, when using the standard robot, force sensor, peg, and hole

configuration, if the hole has a larger orientation error than the peg relative to the

NAP (Figure 2.1), variations in the contact point between the peg and hole (from

which the relative Z position of the parts can be determined) can be measured

in some cases (a and b) but not in others (c and d). For small errors or large

clearance ratios, this condition is not necessarily a problem. For errors so large

that the peg can not enter the hole, enough of the error must be in the peg so

that 2 point contact inside the hole can be established after the error in the peg

is corrected for. I have limited my work in this thesis to assemblies where the

orientation of one of the parts is known.

2.2 Mapping Contact Forces into Relative Po-

sitions

There is a minimum set of measured system variables that are necessary to deter-

mine the state of a system.To determine the relative position of a pair of objects

(the state of the system), the 6 cartesian degrees of freedom (X, Y, Z, 0, , I)

are one possible set of states. A possible set of states for the 2-D system used

in this thesis is: X, Z, and 0 (shown in Figure 2.1). In an error free system,

the cartesian coordinates associated with each part can be used to calculate the

relative positions of the parts. Part location errors and robot position errors in

real systems limit the accuracy of this information. This is, of course, the source

of much of the difficulty of automated assembly. Since the standard cartesian

coordinates are not accessible with the necessary accuracy, I use a different set of

coordinates.



2.2. MAPPING CONTACT FORCES INTO RELATIVE POSITIONS

*NAP Z

X9h
*NAP

4 NAP4NAP

Figure 2.1: Possible Peg and Hole Errors and Contact Configurations - Although
there can be a significant angular position error in the peg (a), in the the hole (c),
or in both (b and d), only the most common case (a) is addressed in this thesis.
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During an assembly, the following information is collected and/or calculated:

1. F,: the sum of measured forces in the X direction

2. F,: the sum of measured forces in the Z direction

3. Fe: the sum of measured forces in the 0 direction

4. AF,/AZ: incremental change in F, for an incremental change in Z

5. AFe/AZ: incremental change in Fe for an incremental change in Z

6. Z: the measured position of the Z axis

Given the idealized, 2-D assembly case where there are orientation errors in

both the peg and hole, perfect part and robot models, and deflections due to

contact forces that are small compared to the size of the parts and to the distance

from the point of contact to the center of compliance of the robot, there is a

transformation from these states to X, Z, and O during two point contact. If the

orientation of the axis of one of the parts is known, the transformation also exists

for single point contact. The latter is typically the case, but even when neither

part orientation is accurately known, during one point contact these states contain

information that can be used to determine the error, relative to the NAP, of one

of the parts (which one depends on the type of contact). Correcting for errors in

one of the parts will often be sufficient to assemble the parts beyond the point

where wedging or jamming can occur. Two point contact is then "safe", and force

information can be collected to correct the remaining misalignment.
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There are cross coupling terms due to deflections in the robot and the parts,

but to a first order, during one point contact:

1. X,., oc F.

2. Z,,eL c F,/To

3. 0 cc arctan(AF,/AZ)

During one point contact:

* For small angles of contact (less than 5 degrees or so), or for larger angles of

contact where the uncertainty is small (e.g. during a tilt and drag operation

where the known angle is 30 degrees with an uncertainty of 5 degrees), the

ratio of F./F, is an accurate measure of the distance from the point of

contact to the force/torque sensor.

* The angle between the peg and the hole can be determined from the value of

AF,/AZ and the values of K. and Ke, the system stiffness in the X and (

directions. As long as the spring constants are repeatable, the actual values

need not be known, because there will then be a consistent relationship

between the value of AF,/AZ and the angle of contact (3).

* If the relative position of the parts is known in Z and 0, contact between

the parts (with F. = 0) locates the parts in X also. If F, > 0, the relative

X position of the parts is related to the force in X and the stiffness of the

robot system at the point of contact.

During two point contact:

* The relative position of the parts in Z can no longer be determined by FI/F

because the system is geometrically overconstrained, so another source of
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this information is needed. During one point contact, the values of AF,/AZ

and AFe/AZ will have the same sign. At the onset of two point contact,

the value of AFe/AZ will reverse in sign, because the contact forces are now

reducing the misalignment of the peg rather than increasing it. The value of

AFe/AZ is a monotonically decreasing function of the relative Z position of

the peg and hole and is therefore a source of the necessary relative position

information. Use of this variable assumes that K,, Ke, and distances to

the center of compliance are set so that the peg will not break two point

contact due to motion along the assembly path [Whitney 82] and that the

tolerances of the parts being assembled are small compared to the clearance

between the parts. Methods that could potentially reduce these constraints

are discussed in the Chapter 6.

* During two point contact, the angle of contact is constrained by the geome-

try of the parts, so AF,/AZ is no longer a valid source of angular misalign-

ment information, but knowledge of the relative Z position of the parts and

knowledge of the existence of two point contact is sufficient to determine

the relative angular orientation of the peg and the hole. This method of

determining the misalignment works if the assumptions mentioned above

are valid.

* The relative position of the parts in X is determined as in the case of one

point contact.

In an idealized assembly cell with no position errors, measurement of the Z

position will produce redundant information. In a real system, this information

can be extremely useful. For example, if a part slips in the robot gripper or is

presented incorrectly to the robot, the inconsistency in the measured Z position

and the value of F,/F, may be a convenient way of determining that there is
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something wrong with the system. For small contact angles, the force measure-

ments in Z are too corrupted by friction while the peg is contacting the side of

the hole to be of any use as state information (in a frictionless system, F, can be

used to determine the relative orientation of the parts in both one and two point

contact), but the Z force information is useful for determining contact between

the peg and the bottom of the hole.

2.3 Representation of Information

The approach presented in this thesis uses a discrete form of information storage.

I began this work based on the assumption that people (who are remarkably good

at assembly) were probably not resolving forces to more than 5 or 10 levels on any

particular assembly task. It seemed reasonable that a robot assembly cell should

be able to get by with a similar number. Figure 2.2 shows three examples of state

measurements mapped into six discrete state values. The range of the states was

determined experimentally. The range of the state variables was estimated based

on the incremental move size along the NAP and the system stiffnesses. Several

assemblies were performed, and then the ranges were adjusted so that the state

measurements spanned the range of each of the states. I used the same procedure

for the simulations and the real assembly tests.

As coarse as the discretization in Figure 2.2 is, it still generates a huge number

of state combinations. Fortunately, the fact that there are 6' mathematically

possible system states for a system with 7 states discretized into 6 regions is of

no particular relevance to the real assembly task because most of these states are

geometrically unrealizible. Experiments verified simulation results that indicated

that no more than 300 out of the possible 279,936 states would ever be visited.

Computer memory and data access times are not the most severe constraint
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Figure 2.2: Mapping of State Measurements Into State Values - The range of the
state measurements is normalized by mapping onto the range of the state values
(in this case 0 through 5). Analog force measurements are mapped into one of
the 6 discrete regions.
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on the convergence rate of the learning system. The time required to visit all

of the states during the learning phase of the algorithm is by far the most time

consuming part of the learning process. In general, it will be desirable to make a

compromise between maximizing information content with high state resolution

and the time required to visit all of those states during the learning phase of the

algorithm.

In the absence of friction and robot errors, the maximum discretization level is

set by the noise and drift in the force sensor. In addition to the forces generated

by the contact angle between the parts, friction generates an additional force

of up to :IiN. For measurements of states where the angle of contact is small

relative to the incremental move direction, e. g. forces in the Z direction in a peg

and hole assembly with small orientation errors, the friction forces are typically

the most significant measurement error in the states. In a well behaved system

(good backdriveability, high position resolution, etc.), if the friction is extremely

low or if the angle of contact is large (approaching 90 degrees), the optimum

discretization of the states based on sensor and robot errors may be so fine that

the total number of states is unmanageably large. For example, a system using 7

states with a discretization level of 100 has 1007 mathematically possible states.

Fortunately, there is rarely a need for this level of resolution.

The angular resolution required to avoid jamming sets the lower bound on the

required resolution of the force derivative states. This angle is a strong function of

the clearance ratio of the parts. Also of importance are the coefficient of friction

between the parts and the compliance of the parts and robot system. For example,

the 2.60 inch peg and 2.70 inch hole that I used in most of my tests required a

resolution of about 2 degrees. Uniform discretization and an expected maximum

error of ±5 degrees then requires 5 states. The 1.000 inch steel peg and 1.010

inch aluminum hole that I used in some of my tests required a resolution of about
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0.25 degrees. Given the same initial errors as the previous system, ass many as 40

states would be required to avoid jamming, depending on the incremental move

size and the assembly strategy used. A direct approach to the problem of having

too many states is to use variable state resolution and range [Simons, et. al. 85],

e.g. in the example presented above, there will clearly be no need to maintain force

derivative states near the bottom of the hole that correspond to angular errors

of 5 degrees when the geometry of the peg and hole has constrained the angular

error to less than .1 degrees. An indirect approach is to avoid using discrete states

at all by making some assumptions about the nature of the data and then, based

on a small subset of the states, generate a functional representation of the data

that spans the space. Drawbacks of this approach include the time required to

recompute the function to include new data and the difficulty of preserving the

temporal relationship of the data [Connell and Utgoff 87].

2.4 The Assembly Algorithm

2.4.1 The Assembly Process

A flow chart of the assembly process in a logic branching form is shown in Fig-

ure 2.3. In block 1, the system is initialized with the peg above the hole and

concentric with it. A random error in 0 was then introduced by tilting the peg

(Figure 2.4).

I used a Gaussian distribution with the tails clipped at 20' to generate random

initial position errors. These values represent the cumulative effect of peg, hole,

and robot position errors. A clipped Gaussian distribution was easy to generate

and I felt that it was a reasonable approximation to the errors encountered when

peg-like parts are stored in loose fitting pallet. Motion of the peg along the
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Figure 2.3: Flow Chart of the Logic-branching Assembly Algorithm

I
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Figure 2.4: Initial Position of The Peg and Hole

CHAPTER 2.
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nominal assembly path occurs at block 2 in Figure 2.3. The peg is moved along the

assembly path in small increments. The increments vary from 0.005 to 0.100 inch,

depending on the stiffness of the system. Typically, the increments were chosen so

that the forces in X and O would never be more than 1 lb or 1 inch-lb above the

maximum allowed by the force limit function defined below. Contact forces are

calculated after each move. Incremental motion continues along the NAP until

the force limit branch point is reached or exceeded. The following equation is an

example of a simple force limit function used to determine a branch point:

F + F2 + (linch x F) 2 _ FORCE-LIMIT (2.1)

When this limit is violated, the program moves to block 6. The assembly algo-

rithm is called upon to generate a response to the force limit that was exceeded.

The program then returns to block 2 to continue incrementing along the NAP

(the Z axis in the peg and hole case). The program continues in this manner until

the assembly fails or the termination conditions are met. Failure results when the

entire tree in Figure 2.6 is searched without getting under the FORCE-LIMIT.

These termination conditions are: the Z position of the peg being within the

maximum Z error of the bottom of the hole; and the force in Z being 5 times the

maximum value that could be generated during 1 or 2 point contact of the peg on

the sides of the hole. This is a simple heuristic, but in general, a successful one.

When necessary, a reasonable extension to this condition is to include the rate of

change of the force in Z (AFZ/AZ). This aids in the differentiation of contact with

the bottom of the hole and conditions such as jamming and wedging. Work in the

Design For Assembly (DFA) field addresses this and related issues in automated

assembly [Boothroyd 1980].
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2.4.2 The Assembly Algorithm

The assembly algorithm does the following things:

* When an assembly is complete, calculate the distance in X and 0 from the

state associated with each branch point to the final position of the peg.

* Add this information to a list of previously visited states.

* If any of these states are visited during future assemblies, use the stored

information to determine the next move of the robot.

When the contact forces exceed the force limit (block 5 in Figure 2.3), the

assembly algorithm is called upon to select a direction (or direction and distance)

in which to move. At the beginning of an assembly run, the list of previously

visited states is empty, so the algorithm initially selects corrective moves at ran-

dom. As the algorithm learns (more assemblies are performed), the list of visited

states and the amount of information associated with each of those states grows.

Eventually all of the states that can be visited will have been visited, and the

output of the algorithm is always based on information from previous assembly

trials. A few elements from the list are shown in Figure 2.5. I decided to keep

track of only the moves in X because I found the results were clearer and easier to

present using only one variable. X and 0 are geometrically coupled, so, barring

any pathological algorithm behavior (none was observed in the simulation or on

the real system), tracking the performance of the algorithm only with respect to

X was sufficient. The first direction in which to move in 0 was always chosen

randomly.

The output of the algorithm, generally a move of set length in X, typically 0.010

inch or 0.001 radian, is passed to block 3, the section of the program that deals

with corrective moves. After the move is made, the contact forces are checked.
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3 2 5 0 5 -8 -9 -8 -12 0 0 0 0 0 0 4
2 4 0 5 2 9 10 8 14 4 6 8 6 5 4 101
2 3 0 5 2 10 7 11 10 9 8 7 5 3 9 42
3 2 5 0 4 -16 -7 -12 -11 -9 -8 -11 -10 -18 -24 11
3 1 5 0 3 -18 -16 -16 -15 -16 -14 -12 -10 -19 -17 108
3 2 5 0 3 -20 -17 -20 -17 -16 -17 -18 -17 -22 -21 36
2 4 0 5 1 3 6 4 3 5 5 8 6 4 4 53
1 4 0 5 1 6 5 10 7 8 7 6 3 0 0 8
1 5 0 5 2 11 9 11 13 15 14 12 10 13 12 11
3 2 3 2 0 -2 1 1 1 1 1 3 2 1 -2 34
3 2 3 2 3 -7 -9 -7 -12 -9 0 0 0 0 0 5
3 2 5 1 0 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 19
3 2 4 1 3 -4 -4 -7 -6 -8 -7 -10 -8 -4 -15 15

Figure 2.5: Data Stored by the Assembly Algorithm. The first fve elements of
each row are the values of the states F., F,, AF./AZ, AF,/AZ, and Z. The next
10 elements are the distances (in units of incremental moves in X) from that state
to the position of the peg at the completion of the assembly. The last element of
each row is the number of times that state has been visited since during a series
of assemblies.
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If the forces have gone up, the move is undone and a move in another direction

is tried. If the forces go down, the program continues to make moves until the

forces are again below the force limit. For simplicity, I chose to restrict the first

corrective move to be a move in X. When I did this, the choice of X was an

arbitrary decision because only one corrective move was allowed in X and E. I

soon realized that this approach would work only for a small range of hole aspect

ratios and centers of rotation (for O). Given a system outside of that range, an

incremental move size in O could not be chosen that would work for all of the

peg and hole orientations that could be encountered during an assembly. I then

modified the algorithm so multiple moves in X and ( were allowed. Moves in X

are made until either the forces go below the force limit or the forces begin to go

up again. If the forces are still over the limit, moves in O are made until the forces

go under the limit. If necessary, the program makes a depth first search through

all four combinations of corrective moves. The search tree in X and O is shown

in Figure 2.6. On the hardware I used, always moving in X first is very desirable

because the robot could make much finer moves in O than in X, i.e. the largest

translation in X of the peg or hole due to the smallest possible move in E was

considerably smaller than the smallest move in X. This meant that if there was

a value of O that would bring the forces under the FORCE-LIMIT for the given

position of the X axis, the discrete moves in O9 were less likely to jump over the

value.

Unlike absolute position information, incremental position information of high

accuracy is often easily accessible. This information is typically a full order of

magnitude better than absolute position information [Gordon, et al., 1983]. A

robot that has a global position accuracy of ±0.010 inch will typically have a

±0.001 inch accuracy for an incremental move of 0.100 inch, a distance sufficient

to correct for part position errors in a typical assembly cell. The algorithm keeps
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Figure 2.6: The Search Tree for the Corrective Moves in X and E

track of the robot position that corresponds to each of the states from which

corrective moves are made during an assembly. Once the assembly is complete,

the relative position of the parts is known at least to within the tolerance and

clearance of the parts. The algorithm then backs up through the data generated

during the assembly and determines the location of each visited state relative to the

final position and consequently to the NAP. This transforms the local information

collected during the assembly into global information, a major improvement in the

information content of the data. Without the information gained by backtracking,

the algorithm is just as likely to reduce the contact forces during one point contact

by rotating out of the hole (increasing the angular misalignment) as it is to rotate

into the hole. This behavior will continue until two point contact is established.

From that point on, there is only one move direction that will reduce the forces.

Without backtracking, the algorithm can learn the correct response during two

point contact, but can not learn to avoid globally unproductive moves during one

point contact because the algorithm's measure of move quality is local, i.e. the

Incremental moves
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move is defined to be good if the forces go down, not because the move necessarily

benefitted the assembly. Any move that rotates the peg out of the hole must later

be corrected by making a move in the opposite direction. This shortcoming could

potentially be dealt with by using a model of the geometries of the peg and hole,

but avoiding the use of system models is one of the main goals of this thesis.

This problem is solved, without the use of a model, by the backtracking. If the

algorithm is set up properly, subsequent assemblies that encounter previously

visited states will consistently make moves from these states toward the NAP.

The algorithm makes only enough moves (of set incremental length) to reduce the

forces in X and E to satisfy the FORCE-LIMIT constraint. The relative position

information makes the transformation from force sensor information to relative

part position direct and complete and has no reliance on any modeling of the peg,

hole, and robot system. All that needs to be known is the nominal assembly path

and a termination condition.



Chapter 3

Test Hardware

3.1 The Robot/Controller System

3.1.1 The Robot

The MIT Precision Assembly Robot (MITPAR) was used for the work in this

thesis. It was designed as a test bed for performing assembly tasks and as a

vehicle for studying robot control strategies. A detailed discussion of the design

of the robot is in Appendix A. The robot was designed with a rather unorthodox

geometry (Figure 1.2). Two axes of the wrist (Pan and Tilt) are attached to the

base rather than to the arm. The configuration of these two axes is similar to

that of a standard two axis welding table. Most six degree-of-freedom robots are

designed with their axes in series. Because the weight of the wrist axes must be

carried by the other axes, the wrist axes are usually much less stiff than the axes

further back in the kinematic chain. By mounting the wrist to the base, we were

able to make the two wrist axes very stiff without compromising the performance

of the other axes.
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3.1.2 The Computer/Interface System

Three separate microprocessors run simultaneously and divide the work of con-

trolling the robot. They share a common backplane which has a complement of

interface cards to connect to the outside world. A Sun 3/180 Unix workstation

provides a development environment and data storage. The interface cards are : a

digital to analog converter board, an analog to digital converter board, five optical

encoder reading cards, a digital I/O board, and extra memory. The backplanes

of the Sun and the VMEbus expansion box are connected together so that data

can be transferred to and from the Unix system. More detailed specifications are

listed in Appendix B.

The Condor system was used for the programming/operating interface to

the computer. "Condor" refers to the computational architecture and program-

ming environment developed at the MIT Artificial Intelligence Laboratory by

[Narasimhan, et. al. 88]. The Condor system is composed of two parts. The

first part is a collection of subroutines and libraries that handle all communica-

tion between programs and the I/O boards. These libraries also provide standard

methods of inter-processor communication and timed interrupt routines for servo

loops. The second part of Condor is a user interface between the Sun computer

and the Ironics processor boards. The interface, called "Xcondor", runs under the

X11 windowing system. It opens a window which is connected to a process on

the Sun system and windows which are pseudo-terminals that connect to each of

the processor boards on the VMEbus system. It also provides fast downloading

over the extended VMEbus. The user writes separate programs for each Ironics

processor, compiles them on the Sun, runs the Xcondor program, downloads the

programs over the VMEbus to the processor boards, and starts them running. The

user communicates with each program through the pseudo-terminal interface.
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3.1.3 The Force Sensor

The test setup used a JR3 6-axis force sensor (JR3, Inc. Woodland, CA) We

chose this sensor for it's flexible interface. The interfaces offered are: raw analog

strain gage signals (the axis decoupling matrix is supplied in the documentation),

RS232, digitized parallel I/O, and decoupled analog. The particular model that

we have is rated at ±25 lbs in X and Y, ±50 lbs in Z and ±50 in-lbs in Mx, My,

and Mz. We used the parallel digital port to transmit the force data from the JR3

interface board to the Condor system because it was convenient. The higher data

acquisition rate achievable through use of the analog strain gage signals and A/D

converters on the CONDOR system was not required for the assembly algorithms.

The JR3 controller board uses 15 bit A/D converters. The first 2 bits were noisy

using the default filter cutoff frequency of 163 Hz. We did not lower the filter

cutoff frequency because we did not need the resolution and other people in the

lab were doing closed loop force control work which required the high bandwidth.

Because the logic branching approach used for this work does not use closed loop

force feedback, the approach is very tolerant of non-ideal sensor behavior. Typical

force state resolutions for the assembly algorithms are around 0.5 lbs. Friction

between the parts generates typical variations in force readings of around 10% of

the measured forces, so the effects of sensor resolution (0.0015 lb) and sensor noise

(±0.006) lb are completely swamped out by the measurement errors due to the

frictional forces. Sensor drift is not a problem because the assembly is performed

quickly relative to the time constant of the drift. A system initialization routine

resets the force sensor offsets before each assembly.
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3.1.4 Controller Design

A detailed discussion of the design and implementation of the servo/controller

system can be found in the Appendix A. I was able to get adequate performance

from the robot by using PD position controllers with digital state estimators

for velocity. Settling time could be reduced significantly by using a trajectory

controller or input filtering, but I did not feel that the potential increase in speed

would be worth the effort and increased system complexity for the experiments I

was running. Using velocity control is one of several issues discussed in the Future

Work section.

Friction prevents the robot from settling at a commanded setpoint. This is

a serious problem for an assembly strategy that attempts to maintain or reach a

certain force. Fortunately, logic branching only requires that some change of state

occur - usually movement of one or more of the axes. The practical restriction that

the use of a PD controller placed on the assembly algorithms was a minimum move

size of 0.002 inch. A position command smaller than this would not necessarily

produce any motion at all because the preloaded bearings in the MITPAR joints

generate a considerable amount of stiction and coulomb friction.

3.1.5 Transition from Simulation to Reality

The longest and most complicated functions in the simulation were the ones that

modeled the geometry and interaction of the peg and hole. None of these were

needed for the real system. The functions that remained were relatively simple, so

I decided to rewrite them in C rather than deal with the possible mysteries gen-

erated by the use of the C-to-LISP interface that would have been required. The

interface would have been necessary because the Condor robot control software

development system is written in C.
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I made several additions to the assembly algorithm to accommodate the behav-

ior of the real robot system. Preliminary trials on the real system were run with

a two second pause between the moves to allow the system to settle. The settling

times of the different axes vary considerably, so I replaced the open loop pause

with a function that monitors the force sensor and sets a flag when the system

(forces) has settled. In addition to speeding up the assembly process, this function

effectively decouples the system dynamics from the assembly algorithm. Changes

in the robot dynamics (structural or controller) show up only as differences in

assembly times.

The simulations used the conventional peg, hole, and force sensor arrangement

shown in Figure 2.4. The peculiar geometry of the MITPAR encouraged the use

of the peg and hole configurations shown in Figure 3.1.

The state information was originally stored in array form. The array spanned

the entire space of each of the states. Data stored in this form was both quick to

access by the computer and easy to decipher by the debugger (me). The data was

stored in a list for the real assembly tests because there is a very limited amount

of memory on the system (; 500k). Access time on the real system was not an

issue. For example, one set of assemblies was performed with 7 states (Fx, Fz,

FO, AFx/AZ, AFz/AZ, ATt/Az, Z) at a discretization level of 6. This results

in 279,936 possible combinations of states. Most of these states will never be

encountered because they are physically impossible, e.g. Fx and FO will always

have the same sign during one point contact. Most of the remaining states will

not be encountered because no corrective moves are required when the system

exists in them, e.g. if all of the states have values near zero. During more than

200 assembly trials, only around 300 of the 279,936 states are visited.
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Figure 3.1: Peg, Hole, and Force Sensor Arrangement for the Hardware Tests
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3.2. THE PEGS AND HOLES

Over 90% of the states are actually visited for the first time during the first 20

assemblies. Checking all of the these 300 states to see if they match the present

state of the system is in requires only 0.003 seconds.

3.2 The Pegs and Holes

Coke cans were used for the peg in most of the trials. The cans offer an excellent

balance of uniformity, availability, stiffness, and crushability. When there is a

problem with the controller, the cans crush without damaging the force sensor.

U-shaped pieces of aluminum were used for the holes. The sides of the hole were

bolted to the base. The bolt holes were slotted so the clearance between the peg

and the hole could be adjusted. Clearance ratios of 0.02 to 0.05 were used. Lower

clearance ratios caused the ratio of contact forces to sensed forces to go up to the

point where the can could be deformed significantly before the forces measured

by the force sensor were large enough to be of use. The last set of assembly trials

was performed with a 1 inch diameter steel peg. The mating holes were machined

from 2 inch diameter aluminum bar stock. The clearance ratios varied from 0.001

to 0.005.
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Chapter 4

Experimental Results

4.1 State Resolution

I ran a series of tests to determine how repeatable the force and torque mea-

surements were. The results of the tests indicate where the upper bound on the

resolution of the states should be set. The tests were run by tilting the hole

and then bringing the peg into contact by incrementing along the NAP (in 0.025

inch increments) until the force limit (FORCE-LIMIT) was exceeded. The forces,

torques, and force and torque derivatives were measured/calculated, and then the

peg was withdrawn. This process was repeated 10 times with the hole at 1 to 5

degrees, in increments of 0.5 degrees. Figure 4.1 shows the results of these tests

for 1 degree (top) and 1.5 degrees (bottom).

Of particular relevance to the feasibility of the basic approach I am taking is

the very clear and consistent difference in the AFe/AZ values resulting from a

difference of 0.5 degrees in contact angle. Also of interest are the errors present in

the data. Encoder resolution combined with a 0.003 inch random position error in

Z is responsible for the bimodal distribution of the data for the 1 degree case. One
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Fx Fz Ft DFx/DZ DFz/DZ DFt/DZ
-0.634995 -0.002670 2.185816 7.170104 0.094605 -24.517784
-0.444451 -0.001907 1.543727 5.984502 0.265503 -20.617599
-0.444870 0.003509 1.542659 6.364447 -0.079346 -21.661301
-0.630913 -0.004044 2.177729 7.499693 0.021362 -25.439409
-0.441818 -0.007095 1.564021 5.972293 0.314331 -21.496500
-0.434303 -0.001297 1.536098 5.876162 0.271607 -20.989914
-0.636482 -0.006332 2.193445 7.647706 0.112915 -25.750689
-0.447541 -0.001450 1.546626 6.150823 0.186157 -20.690842
-0.636788 -0.004349 2.192835 7.516478 -0.064087 -25.561480
-0.634499 -0.013886 2.211756 7.591248 0.354004 -25.640825

Fx
-0.859185
-0.850945
-0.842553
-0.837212
-0.827294
-0.821495
-0.815125
-0.809975
-0.801926
-0.792999

Fz Ft DFx/DZ DFz/DZ DFt/DZ
-0.021744 2.946463 10.308849 0.195313 -36.132660
-0.035629 2.939444 10.572824 0.747681 -37.920986
-0.032578 2.900535 10.061650 0.851441 -36.077732
-0.031891 2.890616 10.661318 0.778199 -38.024754
-0.028534 2.852469 10.026547 0.711060 -35.583347
-0.027618 2.832023 10.023496 0.430298 -35.748154
-0.048142 2.835074 10.157773 1.290894 -36.724705
-0.045700 2.817680 10.124204 1.327516 -36.547707
-0.046387 2.794182 10.014340 1.190186 -35.687141
-0.060883 2.780296 9.974668 1.486208 -36.163216

Figure 4.1: State Values For Contact at 1 Degree (top) and 1.5 Degrees (bottom)
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encoder count in 0 corresponds to about 0.0001 radians. The deflection in E due

to a 0.100 inch move in Z along a surface inclined at 1 degree to the direction of

motion is about 0.0004 radians. The small error in Z results in deflections in the

O direction of either three or four counts. The PD controller is used to position

the axis has a gain of about 0.5 in-lb per count.

The drift in the F, data for the 1.5 degree tests is due to repeatability errors in

the bearings in the robot. The bearings that the Z axis runs on return to almost,

but not quite, the same position during the tests. Runout in these bearings pro-

duces repeatability errors in the XY plane (see Appendix A for robot construction

details). No evidence of this appears in the derivative states. Their values, as you

would expect, are essentially independent of slight variations in the X position of

the peg.

4.2 Performance of the Assembly Algorithm

The system was set up with the 2.5 inch peg (coke can) using a clearance ratio

of 0.04 and random errors in initial orientation of up to ± 5 degrees. No force

state/corrective move information was collected from the first thirty assemblies

in order to establish a baseline system performance level. Force state/corrective

move information was collected and used during all the successive trials until 150

assemblies were completed.

Equation 4.1 is used to show how well the system is performing. Equation 4.2

shows how much learned information was available to the assembly algorithm.

All of the zero-move assemblies (assemblies with initial errors so small that no

corrective moves were necessary) were extracted from the assembly data. I did

this because I felt that the convergence behavior of the algorithm should not be
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influenced by random assemblies that did not offer an opportunity to learn. I ex-

perimented with simply plotting the algorithm behavior against the running total

of the number of states visited. This, I felt, was a reasonable way to represent

the data because the number of visited states is a more fundamental parameter

with respect to the learning algorithm than is the number of assemblies. Unfortu-

nately, most people (myself included) are so used to thinking in terms of learning

vs. number of assemblies attempted, that this form of display met with some

resistance. I decided to keep track of only the moves in X because I found the

results were clearer and easier to present using only one variable. X and 0 are

geometrically coupled, so, barring any pathological algorithm behavior (none was

observed in the simulation or on the real system), tracking the performance of the

algorithm only with respect to X was sufficient.

Some filtering was required to make the trends stand out clearly. Each plotted

point is the result of applying Equation 4.1 and Equation 4.2 to only the next 20

assemblies, e.g. the data point for assembly number 17 is the result of applying

the equations to assemblies 17 through 36.

I had some concerns about the repeatability of the learning and convergence

rate of the system, so I ran several independent series of assemblies using the basic

assermbly algorithm. Figure 4.2 shows reasonably consistent behavior for four runs

of 150 assemblies.

•n+2O minimum required number of moves
PIln- •7= number of moves made

E'+2- number of new states visited
PI2 = 'n (4.2)S•+20 total number of states visited

Applying Equations 4.1 & 4.1 to the data collected during real assembly tri-

als are shown in Figure 4.3. Figure 4.4 is the result of plotting the output of
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Figure 4.2: Repeatability of the Convergence Rate of the Assembly Algorithm
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Equations 4.1 & 4.2 against each other. The plot gives a good indication of

the nondimensionalized learning behavior of the learning algorithm. The roughly

straight, diagonal line indicates that the algorithm performs roughly in proportion

to the amount of information available to it. Algorithms that begin to perform

much better with only a little knowledge will produce traces curved tV the upper

right. Algorithms that require almost complete knowledge before they are suc-

cessful produce traces curved to the lower left. Every tenth data point is plotted

with a star to show the learning behavior relative to the number of assemblies.

The "scribble" at the lower right indicates convergence.

4.3 Evaluation of Modifications to Assembly Al-

gorithm

4.3.1 The Bold Move Strategy - TestO1

Because the force/move pairs have global significance, there is an opportunity to

switch from a learning mode to a "bold move" mode after some learning has taken

place. In this mode the robot brings the peg and hole into contact, looks up the

move data associated with the state the peg and hole are in, and then makes all

of the corrective moves suggested by the data at once. The performance of this

strategy is somewhat at odds with the desire for quick convergence of the learning

curve in that using the bold move strategy ideally results in only one state being

visited during each assembly.

The distribution of move distances in a given state gets tighter as the discretiza-

tion level of the states gets higher until the randomness in the force measurements

due to friction and system errors become a significant part of the state size. This

point was reached typically around a state discretization level of 5 to 10, giving
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Figure 4.3: Convergence of the Assembly Algorithm
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an orientation accuracy of 1 degree in a system with initial errors of ±5 degrees.

Supervised learning using initial contact information combined with a bold

move response can often result in an effective, but fragile assembly algorithm

[Dufay and Latombe 84]. The possible number of initial contact states is small,

so learning (or teaching) is fast, but there is enough uncertainty in the force

information that the likelihood of missing the goal state and encountering new

states is high. When the bold move strategy of Test10 was run using data collected

by the series of runs that was used to produce Figure 4.7, the performance was

impressive. The assembly often required only one branch point. The branching

decision commanded all of the necessary corrections in X and E, and continued

incrementing along the NAP until the peg reached the bottom of the hole. The

raw assembly data shows this behavior clearly (Figure 4.5). In assembly 2, the

branch point occurred at a state that contained move data that was 2 moves

short of being enough to allow the peg to reach the bottom of the hole without

exceeding the force limit and generating more branch points. The 2 remaining

branch points were made at states that had been visited before. The correct move

in X and 0 was made in both cases. In assembly 4, the bold move was also too

short. This time a new state was visited when the force limit was exceeded. The

wrong corrective move in X was tried first and then reversed, which accounts for

the number of total X moves being larger by 2 than the number of necessary X

moves.

4.3.2 Flexible Range of States - Test3

To get an idea what price I was paying for using such a crude state discretization

scheme, I introduced some flexibility into the range of the states. The basic

assembly algorithm has a maximum and minimum value for each of the states
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Figure 4.5: Assembly Data for TestlO0

and a set discretization level within those limits. Any state measurement outside

of the specified range was given a state value corresponding to the nearest end

of the set range. This gave me control over the maximum number of states, but

reduced the accuracy of the states at the ends of the range. State measurements

occasionally extended beyond the set range because I was trying to achieve a

compromise between corrupting the states at the ends of the range (with too

small a range) and loosing information by not spanning the range (with too large

a range). For Test3, I dropped the constraint on the number of discrete regions in

each state and simply set the range and the number of discrete states that spanned

the range. Now, for example, if the range of Fx had been set at ±llb, and the

discretization level set at 10 (states 0 to 9), a state measurement of Fx of 1.1 lbs

was now assigned a state value of 10. More states were then visited during the

100 assembly trials (252 vs. 103), resulting in a slower convergence rate (Figure

4.7). On the plus side, the distribution of distances to the NAP, was, as expected,

tighter than when using the basic algorithm. The bold move strategy of Testl0O

would benefit from this situation.

assembly number 1 2 3 4 5 6 7

necessary X moves 18 11 5 18 8 4 12

total X moves 18 11 5 20 8 4 12

new states visited 0 0 0 1 0 0 0

branch points 1 3 1 2 1 1 1
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The sample states from Test2 and Test3 (Figure 4.6) show the different dis-

tributions clearly. The two states from Test3 would be considered one state in

Test2.

state X distances to the goal state visits

Test2 3 2 5 0 2 -5 -12 -3 -5 -3 -7 -6 -16 -14 -7 45

3 25 0 2 -4 -9 -6 -6 -5 -6 -5 -4 -6 -5 19
Tests

32 7-22 -13 -11 -9 -12 -11 -13 -11 -9 -11 -11 37

Figure 4.6: Sample States from Test2 and Test3

4.3.3 Force Limits With Hysteresis - Test4

As in the basic assembly algorithm, Test4 was set up so that exceeding the force

limit triggered a corrective move. In Test4, the corrective moves were continued

until a lower force limit threshold was reached. If the lower limit could not be

reached, the system did the best it could and continued the assembly. The force

limits were set at 2 and 0.5. A setting much lower than 0.5 tended to get lost in the

noise. The only first order effect of introducing hysteresis into the force limit was

the slower convergence rate relative to the number of assemblies performed. This

was due to the smaller number of states visited during each assembly. A possible,

but unverified second order effect is that the larger number of moves encouraged

in the hysteresis mode might reduce the likelihood of the peg jamming or wedging

in the hole on at least some of the assemblies. Wedging would then be avoided

during any future assemblies with similar errors in initial position.
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Figure 4.9: Convergence Using Hysteresis in the Force Limit
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4.3.4 Reduced State Vector - Force States and the Z Po-

sition State - Test5

I ran a series of tests using only Fx, Ft, and Z with the expectation that the results

would verify the need for keeping track of the force derivative states as well as the

force states. It was during these test that I became aware of the effect of having

an initial error in X as well as in O. If there is no error in X, the bottom of the

peg always starts out over the bottom of the hole, and there is a set relationship

between the initial error in 0 and the values of Fx, Ft, and Z. The behavior of

Test5 was actually quite good when there was no X error. After correcting my

oversight (adding an initial position error in X) I made another series of tests. The

results are shown in Figure 4.12 and Figure 4.13. The choice of system parameters,

in particular, the discretization level of the states, caused the two configurations

shown (exaggerated) in Figure 4.11 to be interpreted as the same state for a

small range of initial errors in X and 9. A higher discretization level could patch

this problem but not completely solve it, because the discretization level would

get unmanageably large as the peg and hole clearance ratios got smaller. In

addition to the convergence being lower than when using the force derivative

states (Figure 4.3), the distribution of move distances for each state is large. This

problem is not correctable. It is a systematic shortcoming of Test5 due to the lack

of force derivatives or other source of relative angle information. The bold move

strategy can not work well with this reduced set of states.
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a iZ b

X

Figure 4.11: Two Identical States for Test5
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Figure 4.13: Learning Using Only the Force States and the Z Position State
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4.3.5 Reduced State Vector - Force Derivative States and

the Z Position State - Test6

Are the force derivative states and the Z position enough? The results of Test6

(Figure 4.14) suggest that they are. I believe that the force states should still

be used because they are a direct measure of the relative position of the parts

along the axis of the NAP. Simply measuring the Z axis position is an indirect

measurement that is sensitive to unanticipated part position errors.

4.3.6 Passive Wrist Compliance - Test7

I ran a series of tests with a compliant element (a Lord #J4624-32 sandwich

mount vibration isolator) mounted between the Z axis and the peg. Before start-

ing the tests I had assumed that the added compliance would help by allowing

larger moves to be made. The larger moves would be less effected by the nonideal

positioning behavior of the robot. The addition of the compliant element changed

the stiffness of the peg from 600 lbs/inch and 300 inch-lbs/degree to 5 lbs/inch

and 1 inch-lb/degree measured at the bottom of the peg. The results in Fig-

ures 4.16 & 4.17 show that, at least for the compliances I chose, my intuition was

very wrong. The basic assembly algorithm will behave well with a wide range of

compliances, but it is sensitive to the locations of the centers of those compliances.

This sensitivity is due to the uniform range of the states, i.e. the maximum and

minimum values and the discretization are constant over the NAP. In order to

get a force measurement during one point contact that is above the noise it was

necessary to set the incremental move length in Z to 0.200 inch. Following my

normal procedure, I adjusted the range of the states so the state measurements

spanned the state space. The system behaved well until the peg came into two

point contact with the hole. The force and torque measurements jumped by an
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Figure 4.14: Convergence Using Only the Force Derivative States and the Z Po-
sition State

140



72 CHAPTER 4. EXPERIMENTAL RESULTS

.9

.8

co

0

.2

.1

0
0 .1 .2 .3 .4 .5 .8 .7 .8 .9 1

Ratio of Necessary Moves to Total Moves

Figure 4.15: Learning Using Only the Force Derivative States and the Z Position
State



4.3. EVALUATION OF MODIFICATIONS TO ASSEMBLY ALGORITHM 73

order of magnitude. This was due to the effective X stiffness of the peg rising al-

most to the value measured before insertion of the compliant element. The added

compliance was not the primary problem, the abrupt change of compliance was.

Within certain limits, a more complex form of the learning algorithm could deal

with the behavior of this system by having state ranges that varied with position

along the NAP. The performance of the algorithm gradually declines as the rota-

tional stiffness goes down no matter what is done about the range of the states

because the algorithm uses the position of the peg when the assembly is complete

to calculate the relative move lengths from each of the states visited during the

assembly. If the peg has no rotational stiffness, there is no information available

to determine the orientation of the peg.

4.3.7 Low State Discretization - Test9

The upper limit of state resolution is set by the effect of friction and other system

errors at around 10 (see the Section 4.1). The lower limit is 2. I gave this

state resolution a try out of curiosity. The assembly algorithm behavior using a

state discretization of 2 is shown in Figures 4.19 & 4.20. The behavior was quite

interesting. The system wo'uld often begin to converge quickly but then begin to

make incorrect moves. This behavior was initiated when a corrective move was

made during 2 point contact (Figure 4.18a) that resulted in one point contact

(Figure 4.18b).

Usually the peg would then be incremented down until contact with the other

side of the hole was reestablished or until the assembly was complete. However, if

the forces were just below the force limit and there was a small orientation error in

the hole, incrementing in Z could cause the force limit to be exceeded during single

point contact. Then, because the discretization level was set at 2, the system was
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(b)

(c)

Figure 4.18: Pathological Contact Geometry for a System With a State Discretiza-
tion of 2. A corrective move to the right in (a) results in one point contact (b).
The configuration in (b) can not always be differentiated from configuration (c).

(a)
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in the same state as shown in Figure 4.18c. Using the corrective move information

associated with Figure 4.18c moves the peg in the wrong direction, but the system

then recovers because two point contact has been reestablished and the next state

arrived at (after incrementing in Z) will contain useful move information. The

effect of this series of moves is not apparent until the next assembly is attempted

that has a similar initial error. Because the assembly is completed by moving

the peg to the right and rotating the peg clockwise, the moves stored in the data

array for the condition shown in Figure 4.18c end up having roughly the correct

magnitude, but the sign is wrong! If this series of events takes place in the lower

of the two regions in Z, the next few assemblies contain some incorrect moves, but

the system recovers. If the events take place in the higher of the two Z regions, the

peg increments in Z until the force limit is exceeded and then proceeds to make

all the wrong moves. This causes the hole to rotate out from under the peg and

increase the rotational error to as much as 10 degrees. The peg then essentially

jams in the hole. The learning system can be protected from this situation by

having a sufficiently large number of saved moves (past history), but "sufficiently

large" is a difficult number to pin down. Even if this number is chosen correctly,

the resulting state information has such a large distribution that it is good for

little more than determining the correct direction in which to move.

The distribution of move distances in a given state gets tighter as the discretiza-

tion level of the states gets higher until the randomness in the force measurements

due to friction and system errors become a significant part of the state size. This

point was reached typically around a state discretization level of 5 to 10, giving

an orientation accuracy of 1 degree in a system with initial errors of ±5 degrees.

Distributions this tight are necessary for good performance of approaches like the

bold move strategy. See Section 4.1 for more detail on state resolution issues.
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4.4 Assembly of a One Inch Diameter Steel Peg

using a clearance ratio of 0.005

The results of a series of assembly trials using a 3.0 inch long, 1.000 inch diameter

steel peg and a 2.0 inch long, 1.005 inch in diameter aluminum hole are shown in

Figures 4.21 & 4.22.

I feel that the poor behavior of the algorithm when the system was run with

these parts was due almost entirely to the inability of the robot to respond consis-

tently to requested moves of less than 0.005 inches or 0.002 radians. Many of the

assembly attempts failed because the forces exceeded the limit of the force sensor.

These runs were very frustrating to watch because the algorithm would typically

correct for nearly all of the error before failing. The reason for this behavior is

that the stiffness of the system goes up considerably as the peg is inserted into the

hole. At the beginning of the insertion, the system stiffnesses were low enough so

that the errors in the moves made by the robot did not result in the force sensor

being overloaded. When the assembly was nearly complete, the system could be

exceeding the force limit due to a large, positive Fe value, and one commanded

0.002 radian corrective move in ( could produce a large negative value of Fe. The

point in between that would have satisfied the FORCE-LIMIT constraint was

passed over. A robot capable of more precise motion andor with more compliance

in the system should be able to assemble these parts without difficulty.

4.5 Factors Limiting Assembly Speed

The algorithms developed in this thesis are not computationally intensive. Essen-

tially all of the time required to assemble a peg and hole was spent waiting for the

robot system to settle. This is not an uncommon result [Caine 1985]. An average
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assembly required about 2 minutes during the early learning stages and about 20

seconds after the system had converged and was making nearly all of the correct

moves. The computation time required to look up the move data averaged around

0.020 seconds per assembly. I have made some suggestions for improving assembly

speed in Chapter 6.
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Chapter 5

Conclusions

5.1 Summary of Research Contributions

This thesis makes the following contributions to the field of robotic assembly:

1. Force derivatives, calculated from changes in contact forces between the peg

and hole due to incremental moves along the assembly path, are introduced

as a source of information that allows the unique determination of the rela-

tive position of the peg and hole during one and two point contact.

2. Backtracking from the goal state through the moves made during an assem-

bly is used to establish the relationship between the forces measured during

the assembly and the position the parts were in when those forces were mea-

sured relative to the position of the parts in the goal state. This is effective

because the relative position of the parts is known far more precisely at the

completion of the assembly process than at the beginning.
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5.2 Comparison with Compliant Motion

Compliant motion routines use geometric models of the assembly task in order to

determine the combination of center of rotation and translational and rotational

stiffness that minimize the insertion forces. Force sensor information, if used at

all, is generally used to measure divergence from the anticipated force trajectories.

The response to significant divergence is often to simply stop the assembly and

wait for a human being to fix whatever is wrong.

Sufficient information is available from the force sensor, responses to recent

moves, and results from previous assemblies so that the approach developed in

this thesis does not require a geometric model of the parts or even of the assembly

cell, i.e. the robot geometry, kinematics, stiffness, etc.. The only infcrmation

about the assembly that is required beyond the sensor information is a nominal

assembly path (NAP) and a termination condition. The NAP is the path that

would be followed if the assembly was attempted open loop.

5.3 Necessary Conditions for Application of the

Approach

For the approach I have developed in this thesis to be successful, the assembly

cell, the parts, and the algorithm code must meet certain criteria:

* AF./AZ, AFe/AZ, F., Fare a minimum set of system parameters that

must be known (and be non-zero) in order for the relative position of the

parts to be known (Test5, Test6). However, keeping track of other param-

eters can add robustness to the system, e.g. AF,/AZ is useful for sensing

contact between the peg and the bottom of the hole.
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* Repeatable, monotonic system and part stiffnesses are essential for my ap-

proach (I was surprised to discover that the Coke cans that I used for many

of the tests I ran have non-monotonic stiffness when the contact force on

the side of the can exceeds two pounds or so).

* There must be enough compliance in the system so that an incremental move

along the NAP can be made that is large relative to the surface imperfections

or the parts (without damaging the parts, damaging the force sensor, etc.)

* The geometry of the system must not change significantly due to the deflec-

tions resulting from the contact forces.

* The distance from the point(s) of contact to the point at which the forces

are measured must be large.

* Large variations in system stiffness in different contact configurations should

be avoided. A likely place for large changes to occur is at the transition from

one to two point contact (Test7). Using different ranges and discretization

levels for the states during one and two point contact help accommodate

the transition, but the use of discrete moves in X, Z, and 8 make it impos-

sible to determine exactly when the transition occurs, so the problem is not

completely eliminated.

* The minimum discretization level is not well defined for parts that will not

jam in that the peg will always eventually find it's way to the bottom of

the hole, even at a discretization level of 2 (Test9). For parts that will jam,

The discretization level must be high enough so that the angular error in

the states never exceeds the angle at which jamming will occur.

I have developed a very simple machine learning algorithm that has success-

fully assembled several hard, smooth parts that can be modeled as a peg and
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hole. Convergence (visiting most of the states during a successful assembly and

acquiring corrective move information) took approximately 20-50 assembly trials,

or 500 state visits for a system with a clearance ratio of 0.04 and random ori-

entation errors of up to ±5 degrees. This implies that a real assembly system

using these algorithms could converge quickly enough for the learning to be done

on line. Learning by example or supervised learning would certainly improve the

initial convergence rate. I did not pursue either of these approaches because I felt

that they would make the learning rate even more difficult to define and measure.

The present assembly time of 10-20 seconds is much too slow to be practical. For

most applications, changes will need to be made in the algorithm that will allow it

to accommodate the dynamics of the robot, or machines that have a much better

behavior than the machine I used will have to be developed before this approach

is worth considering for industrial use.

The robot that I used had some characteristics that limited the range of part

geometries, sizes, and errors that the approach I developed could handle (see Sec-

tion 5.5). The fundamental limit of the accuracy of the approach is a function

of the surface finish of the parts and the distance that can be traveled with the

peg and hole in contact without slipping or damage. For example, if a peg and

hole have a 100 micro-inch finish and the robot can move 0.030 along the NAP

with the peg and hole in contact before wedging or jamming occurs, the error in

measurement of the contact angle will be up to arcsin(0.000200/0.030) = 0.38 de-

grees, even with perfect robot positioning and sensing. !uterestingly, if the initial

orientation error between the peg and the hole is small, e.g. 2-3 degrees, intention-

ally increasing the error before the assembly is started can actually improve the

accuracy of the force derivative states (contact angle), because the peg can move

much further along the NAP in one point contact. The optimum angle of contact

is a function of all of the nonideal behavior of the system as well as the geometry
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of the parts and therefore should be determined experimentally, possibly as part

of the learning algorithm.

5.4 Suitability of the Data Representation

Discrete representation of the system states and data appears to be a good choice

for the peg in hole assembly task because friction introduces errors large enough

so that the optimum resolution of the states in terms of information content can

often be limited to a manageable number. Setting the range of the states by trial

and error is slow and does not produce optimal results. The application of an

automatic variable state resolution algorithm [Simons, et. al. 82] would improve

the performance of the system significantly.

The one level search (Figure 2.6) used to find a combination of corrective

moves is not adequate for assemblies where jamming creates some ambiguity in

the choice of corrective move direction. This problem was pronounced during the

assembly of small clearance ratio parts (i .01). Many assemblies were terminated

because no combination of moves allowed by the algorithm reduced the forces

enough for the assembly to continue.

5.5 Hardware Requirements

The restrictions placed on the assembly system behavior by the logic branching

algorithms I developed are less stringent than are desirable for an approach that

uses real time force feedback, but the restrictions are by no means loose. For

various reasons, many combinations of system stiffnesses, minimum move size,

force sensor resolution, gripper strength, peg and hole clearance, surface finish,

stiffness, and strength (robustness) make the assembly algorithm I have developed
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unusable. Fortunately, there appear to be a reasonable number of systems and

parts where my approach will at least be successful, if not practical. Desirable

behavior for the assembly system is:

* Good barkc-iveability - The move size along the NAP that generates forces

that are ma.•geable by the gripper, part, and force sensor may be so small

that the force a.asurements become sensitive to position errors and random

noise in the environment. A stiff robot-part system is particularly sensitive.

Controlling the system stiffness by adjusting the servo gains is far easier

than changing the robot structure, especially if the stiffnesses need to be

changed as a function of the state of the assembly.

* Low steady state position error - This relaxes the backdriveability constraint

somewhat by allowing small moves to be made in a stiff or delicate system.

* No backlash - The force derivatives, which are the key to determining the

relative orientation of the parts, require accurate local position information.

* High resolution position feedback - The tilt axis on the robot I used has a

4000 count/revolution encoder driven through a 15:1 transmission, giving

60,000 counts per revolution. Even with a relatively low gain set in the PD

controller, 1 encoder count (0.0001 radians at the table) of position error

appeared as a 0.4 inch-lb. torque. This shows up in the state resolution

data presented in Section 4.1.

Notable by their absence from this list are restrictions placed on global position

accuracy and repeatability.
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Future Work

3-D applications are perhaps the most obvious extension of the work presented in

this thesis. Many real assembly tasks can be performed with the 2-D algorithms

presented in this paper, however. The orientation errors of a peg that has been

picked up from a pallet by a fisat jaw gripper will generally be large only in the

plane of the jaws. All other system errors are often small enough so that assembly

is possible using a 2-D algorithm.

The peg and hole assembly is a particularly simple assembly task. The abil-

ity to use information arom previous moves and assemblies potentially allows the

logic branching approach to be extended beyond compliant motion to systems

that generate locally ambiguous force information, such as systems where contact

can be made perpendicular to the direction of motion. Heuristic search algorithms

(wiggle the parts?) or probabilistic methods [Erdmann 89] could be used to get

back on the path to the goal. Logic branching is a natural choice for these more

complicated geometries. Systems using manipulators with many degrees of free-

dom and/or many sensors [Salisbury and Craig 82] have so far been much easier

to build than to program. Logic branching may also be a good choice for these



CHAPTER 6. FUTURE WORK

more complicated systems.

I am not at all sure that robots should mimic people in the way they assemble

things, but pursuing this goal will at least lead to a better understanding of

both systems (people and robots). The approach I presented in this thesis sets

positions and then measures the forces and changes in forces that result from the

robot moving to those new positions. A hybrid approach that can also set the

forces and measure the changes in position due to the change in force is probably

closer to what people do. Logic branching is a convenient way to jump from one

mode to another in a hybrid algorithm.

The transition from one to two point contact generally has a significant effect

on the size of the forces and force derivatives encountered during an assembly.

Variations in system stiffness (often due to compliant parts or gripper) can also

have an effect. The use of variable state resolution [Simons, et. al. 82] could be

applied to this problem. Simons, et. al. proposed a system that would modify an

initial 'guess' at the ideal state resolution by coalescing neighboring states that

have the same move distances associated with them and dividing states that have

an unacceptably large distribution of move distances. Retention of the actual force

measurements along with the discretized values would allow the data to be used

if the variable state resolution algorithm determined that a state's resolution was

too coarse. Alternatively, a fuzzy set approach to the state resolution might be a

good compromise between straight discretization and a functional representation

of the states.

The approach presented in this thesis relies on the tolerances in the parts be-

ing small compared to the clearances for accurate determination of the relative

positions of the parts during two point contact. If valid, this assumption means

that changes in contact angle due to incremental moves along the assembly path

are and accurate measure of both their relative position in Z and 9. For many



assemblies this is not a valid assumption. A possible solution to this problem is

the use of higher order derivatives of the forces with respect to Z or the derivative

of F./Fe. Noise in these derivatives could make this approach impractical. Alter-

natively, an estimate of the relative position of the parts could be generated and

carried through the assembly from beginning to end [Simunovic 79]. A goal of this

thesis was to minimize the reliance on anything other than local force information

for determination of the relative position of the parts. Using an estimate of the

part orientation based on earlier estimates is not consistent with the goals of this

thesis, but may be of great value for real assembly line applications.

More complex bold move strategies may be necessary for small and/or close

fitting parts. Theoretically, the moves along the NAP and the corrective moves

can be scaled to accommodate any size and shape of parts. Practically, non-

ideal behavior of the robot places a limit on the minimum size of the parts. For

example, once the parts have come into contact, only one or two moves along the

NAP may be possible before wedging occurs. It may be beneficial to back up and

repeat these moves several times in order to reduce the uncertainty of the force

measurements.

Running the assembly algorithms under simple PD control is definitely not the

best choice for use in industry. At the very least, a vibration reduction algorithm

[Singer and Seering 87 88] should be used. Velocity control could eliminate most

of the time needed for the system to settle when using incremental moves under

PD control. Further extending this approach, safe velocity trajectories could be

learned by the system, probably after the system learned the correct responses to

most of the possible force states.

Learning the termination condition may be practical. Solution of this problem

will likely be extendable to the broader application of learning how to set objects

down. The present condition is intentionally conservative in that it requires a
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force in the Z direction to be significantly larger than any Z force expected during

the assembly. The drawback to this high limit is the generation of new states

or the corruption of existing states with force and torque information generated

while the peg is contacting the bottom of the hole but has not yet exceeded the

termination threshold. A reasonable way around this problem may be for the

algorithm to learn the value of AF,/AZ that corresponds to the peg contacting

the bottom of the hole. This parameter would then be used in conjunction with

a simple force threshold on AF, and a neighborhood of Z.

What to do if the average assembly path is different enough from the nom-

inal assembly path so that there is a significant performance gain achieved by

determining the difference? A straightforward solution is to use the NAP as a

guide only and generate an rms (or other) fit to the data. This approach works

well to correct discrepancies between the NAP and the real system due to static

errors, e.g. a repeatable offset due to incorrect positioning of a part fixture. A

more difficult problem to address occurs when the NAP changes orientation due

to random initial errors in the orientation of the stationary part. Initial one point

contacts between the peg and hole do not generate any force information that can

be used to determine the true assembly path.
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Appendix A

Design and Construction of the

Robot

This appendix is an extension of [Vaaler and Seering 86]. [Vaaler and Seering 86]

was written before the servo systems were installed on the axes so the sections on

the servo hardware and performance are new material. The robot was designed as

a test bed for performing assembly tasks and as a vehicle for studying robot control

strategies. Upon initiation of the project, we set out to design a manipulator which

would be an order of magnitude stiffer (first structural mode greater than 50 Hz

with a combined axis weight of 100 lbs) and an order of magnitude quicker (peak

acceleration greater than 3g) than commercially available robots of comparable

size.

Our robot was designed with a rather unorthodox geometry (Figure 1.2). Two axes

of the wrist are attached to the base rather than to the arm. The configuration

of these two axes is similar to that of a standard two axis welding table. Most

six degree-of-freedom robots are designed with their axes in series. Because the
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weight of the wrist axes must be carried by the other axes, the wrist axes are

usually much less stiff than the axes further back in the kinematic chain. By

mounting the wrist to the base, we were able to make the two wrist axes very stiff

without compromising the performance of the other axes.

Choice of this configuration enhances the robot's ability to perform some types of

work on a component. The component is mounted to the wrist base from where

it can be oriented with two degrees of freedom. The robot's arm moves with three

linear cartesian and one rotary degree of freedom. The two combined provide

the six degrees of freedom necessary to allow the robot to access any position

of the workpiece. Conventional anthropomorphic robots generally loose effective

degrees of freedom as they reach to the back sides of workpieces. They actually

have complete use of six degrees of freedom throughout a relatively small portion

of their specified workspace. The four-plus-two configuration does not have this

problem. It does, however, have it's own set of disadvantages. The workpiece must

move in order to access it, so the position of the workpiece is in general known less

accurately with this axis configuration. Also, the ability to set washers, springs,

etc. in place and rely on gravity to keep them there until later in the assembly

process may be lost.

A.1 Hardware Design

Design of this robot began with the following set of primary system specifications:

1. The workspace should be approzimately 12 inches by 24 inches by 18 inches.

We felt that this workspace was large enough to accommodate may parts

that robots might be asked to assemble. Since enlarging the workspace hm a
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negative influence on almost everything; eg. stiffness, accuracy, and weight;

system optimization strongly favors minimizing the workspace size.

2. The weight of the translating parts should not exceed 100 lbs.

100 lbs. was not a strict constraint. Rather it was used as a starting point

for the axis design optimization. If the system stiffness resulting form this

constraint was not acceptable, this constraint would have been relaxed. This

limit includes the mass of two DC servo motors capable of producing the

specified acceleration and speed.

3. The position repeatability should be ±0.002 inch.

This goal was chosen rather arbitrarily, and, as we will discuss later, we were

unable to meet it.

4. The azes should be capable of 200 inches/second slew rates.

We did not want to be slew rate limited by our choice of bearings. 200

inches/second was comfortably above the maximum slew rate of any actu-

ators that we considered using. Actuators capable of producing 4 G ac-

celerations can cause the robot to reach 200 inches/second while traversing

it's workspace. We have designed and evaluated a pneumatic sefvo system

capable of accelerations greater than 5 G [Pasch 84].

5. The stiffness of the azes should be mazimized.

Not enough is known about how robot stiffness influences performance of

various assembly tasks to set a particular stiffness spec. This is really an

open-ended goal rather than a constraint.
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6. One horizontal dimension of the frame should be less than 32 inches.

Keeping one dimension of the robot frame under 32 inches allows the ma-

chine to pass through a standard door without being disassembled. This

constraint limited range of motion in one direction.

7. The upper frame should be supported by two columns.

The goal here was to maximize workspace accessibility. Because the robot is

to be used in a research environment, we felt that we would need mechanical

access for parts feeders, tool feeders, and instrumentation as well as visual

access for video cameras and demonstrations.

8. The cost of the mechanical hardware must be less than 12,000 dollars.

This was our budget. The design should be practical. We were interested

in creating a design, components of which might find their ways into com-

mercially produced systems. As a result we avoided the use of esoteric

technologies.

The following constraints were derived from those described above.

1. The bearings will be made with cam followers traveling along hardened ways.

Most standard linear bearings can not meet our 200 in/sec slew rate spec.

Table 1 lists the maximum recommended slew rates for the standard bear-

ings we considered. The maximum speed rating of the ball bushings was

high enough so that we did consider them seriously. We determined that

2 in. diameter, continuously supported ways would be required to produce

a system that had the load capacity and stiffness of the much smaller cam

followers and ways that we did use. The large envelope of the ball bushing

assemblies, the indeterminant nature of their preload, and the difficulty in
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machining the supports for 4 bearings on each axis were enough to convince

us to use cam followers. Had we not placed such importance on the stiffness

constraint, ball bushings might have been a better choice than cam follow-

ers. It might appear from this list that cam followers are the only bearings

that meet our slew rate spec. This in not quite true. There are several non-

standard bearings that do meet our spec. Special order "Tychoway" type

bearings are available that will meet our slew rate spec, but the price we were

quoted was more than an order of magnitude higher than for cam followers.

Tycho-way bearings, in addition to their high c-,st, are much more difficult

to set up than cam followers. Gas and oil bearings will easily meet our specs

for speed and repeatability. They do have some significant drawbacks, how-

ever. Gas bearings, if they are operated on shop air (100 psi), must be quite

large or have small clearances to be as stiff as the cam followers we used.

Reasonable clearances (0.001 inch - 0.002 inch) require unreasonably large

bearing surfaces (30 square inches). Reasonable sizes (1-4 square inches) re-

quire unreasonable tolerances (0.0001 inch - 0.0002 inch). The use of an air

amplifier is an alternative. Supplying the bearings with 2000 psi air would

allow the use of practical bearing sizes and clearances. Construction, setup,

and maintenance costs would be high. Gas bearings might be justified if

it was determined that coulomb friction could not be tolerated in the axis

motion. Oil bearings have their own set of drawbacks, the most significant

being cost and cleanliness.

2. The cam followers must be 0.625 inch wide.

The next larger size of cam followers (0.750 inches wide) are stiffer than

the 0.625 inch followers we used, but the larger, heavier ways they required

would have consumed half of the weight allotted for the moving parts. The
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load capacity of the next smaller size (0.500 inch) was not large enough to

meet the combined acceleration and moving weight constraints. We followed

recommended practice by preloading the cam followers slightly in excess of

the expected dynamic load (to prevent skidding), so some of the bearing

loads are always at least twice the load imposed through the structure.

3. The bare azes could weigh up to about 25 lb.

We determined how long and therefore how heavy the bearing ways had to

be in order to span the workspace. We also made an approximation for the

weight of the X and Z axis actuator systems that would be required to meet

the acceleration and slew rate specs (The Y axis actuator is stationary). We

were left with only 25 lb. for the bare axes.

The constraints just presented set up the problem of optimizing dimensions of the

moving axes. Because our goal was to build a system that was stiff and fast, we

evaluated changes in geometry on the basis of the following ratio:

increase in mass
decrease in endpoint deflection

For an ideal design, this ratio would be the same for all structural components.

We considered three sources of deflection in our analysis: beam bending, beam

shear, and cam follower deflection. The deflections due to torsion and tension

are negligible. The optimization was done based on the assumption that the

robot would spend most of the assembly time working around the middle of the

worksurface with the Z axis almost fully extended. We made all of the deflection

calculations based on a 100 lb load being applied to the end of the Z axis in

the X and Y directions. The "total" deflection is the deflection measured at the
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end of the Z axis in the direction of the force. Using a fixed value of 100 lb

(approximately the maximum expected load) gave us a better feel for the way the

system was behaving than if we had used a symbolic constant. Rough calculations

indicated that the cam followers would be the first elements of the structure to

fail if the system was overloaded, so we generated the "optimum" axis shapes and

then checked the maximur expected stresses in the axes. Figure A.1 is a plot

of system characteristics versus the variation of the spacing of the cam followers

that support the Z axis.

This type of plot shows the behavior of the equations used for selecting dimensions

of the X, Y, and Z axes. As the cam followers are spaced farther apart, the X

and Z axes must change configuration. This results in an increase in system

weight. Based on the information in this and corresponding figures, a spacing of

approximately 8 inches was chosen for the cam followers supporting the Z axis.

A.2 Construction Details

We considered building the moving axes out of wrought aluminum, cast aluminum,

steel and composites. We felt that wrought aluminum was the best choice for our

robot. This is because the machine we built is a prototype. If several robots of

this general design were built and there was no expectation of modification, cast

aluminum or composites would probably be a better choice of materials. There

were significant modifications made to the axes during construction. We expect

that there will be more changes made in the future. A welded wrought aluminum

structure is much easier to modify than either a casting or a composite structure.

We chose aluminum over steel because using aluminum results in a stiffer structure
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Figure A.1: Plot of the Variation of Component Deflections as a Function of Cam
Follower Spacing on the Z Axis
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(in this case) and is much easier to machine. Welding together a structure from

steel that is one-third the thickness of the aluminum in an otherwise identical

structure does not always produce a structure with similar stiffness. Although the

axial stiffness of the structural elements may be roughly the same, the bending

stiffness of the thicker aluminum elements would be much higher. Also, any

warpage during welding can significantly reduce the stiffness of the structure.

Warpage is much more likely to occur with the thinner steel structure.

The frame of the robot is built from standard structural steel C-channel. The base

is welded from 12 in. C-channel. The top and bottom of the base were Blanchard

ground parallel and flat to within 40.002 inch. The worksurface is Blanchard

ground 3/4 inch mild steel plate. The columns are 6 inch by 6 inch box sections

welded from 6 inch ship channel. The areas where bolts connect the frame sections

are reinforced with 1 inch steel plate. These mounting surfaces were also ground

flat. The upper frame is a 6 inch by 3 inch rectangular section tube welded from

two pieces 6 inch C-channel. The mounting plates are again made from 1 inch

plate. The top and bottom of these sections were Blanchard ground. The worst

case frame stiffness is 50,000 lb./inch. The first mode of the frame is around 48

Hz with the frame resting on the floor.

The moving X, Y, and Z axes are welded, monocoque structures made from

0.125 inch wall aluminum. The axes roll on crowned cam followers so the par-

allelism of the cam follower mounting holes is not terribly critical. The cam

followers are attached to the axes with eccentric studs. This allows the cam fol-

lower preload to be adjusted and compensates for considerable machining errors.

The cam followers are a standard product of McGill Precision Bearings. Each axis

is supported by 16 cam followers (Figure A.2). The followers ride on hardened

ways that are ground flat to ±0.0002 inch. The X and Y axis power systems are

109



APPENDIX A. DESIGN AND CONSTRUCTION OF THE ROBOT

presently DC servomotor driven precision ball screws. The motors are attached

to the screws with split shaft couplers to maximize actuator stiffness. The ball

screws are accurate to within ±0.0002 inch. The Z axis is driven by DC servomo-

tor acting through a rack and pinion. The Z axis is hollow ( 4.00 inch diameter

by 0.125 inch wall aluminum tubing), so air, power, and sensor cables can easily

be routed through it (Figure A.2). The travel in the cartesian axes workspace is

approximately 12 inches x 22 inches x 16 inches (XYZ).

The Spin axis is mounted on the end of the Z axis. It was built around a standard

1 inch 5C collet and collet block. The Spin axis is directly driven by a samarium-

cobalt torque motor. The motor has a continuous torque rating of 2.5 ft-lb. The

peak rating is around 5 ft-lb. The collet block is mounted in a pair of extra light

series angular contact bearings. The collet is actuated by a pneumatic piston that

applies 400 lb draw. The 1 inch collet serves as a "universal" end effector interface

that can change end effectors automatically. The axis also contains a pair of slip

rings and a set of rotating seals to supply power and air to the end effector. Thiz

arrangement results in a wrist that is capable of continuous rotation. All cabling

is routed through the Z axis.

Samarium-cobalt torque motors rated at 3.0 ft-lb. (continuous) drive the axes of

the wrist or positioning table through spur gears. The Tilt axis is mounted in

preloaded deep groove ball bearings. The Pan axis is supported by a 4 inch i.d.

Kaydon 4-point contact thin section bearing. The large bore of the bearing allows

convenient access from beneath to the worksurface of the table for electricity, air,

and sensors.
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Figure A.2: Construction Details of the X, Y, and Z Axes - The top drawing
shows the Z axis tube cut away to display the rings used for internal stiffening
and way attachment. The Y axis in the top drawing and the X axis in the bottom
drawing are cut away to show their monocoque construction.
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A.3 The Servo System

We chose the motors primarily for their power to weight ratio and actuator com-

patibilities. The X and Y axis motors have a maximum rpm rating of 3500. This

matches up well with the 3000 rpm peak rating of the ball screws. Transmissions,

ball screws for the X and Y axes and a rack and pinion for the Z axis, were chosen

according to the guidelines presented by [Pasch and Seering 84b].

The goal of the servo loop design was to do the minimum necessary to make the

axes well behaved for use with the learning algorithms. The learning algorithms do

not require accurate absolute position information, nor do they require accurate

position control, so the demands placed on the controllers were not unreasonable.

Simple PD controllers were found to adequate for all of the axes. An error be-

tween commanded position and encoder position of 0.002 inch or 0.002 radians

was somewhat arbitrarily chosen to be acceptable. The gains required to achieve

0.0005 inch servo error (2 encoder counts) tended to generate some limit cycling.

In order to meet this spec, the proportional gains had to be set quite high in order

to overcome the erratic levels of coulomb friction introduced by the preloaded cam

followers. In order to make sure that the controllers were robust, the gains were

then turned up until the influence of higher modes became noticeable in the form

of limit cycles and longer settling times. We were able to increase the gains by at

least 30% on all of the axes which we felt was sufficient to guarantee acceptable be-

havior in all expected operating conditions. The controllers were developed using

MatrixX, a software package from Integrated Systems Inc. (ISI). State estimators

were used because optical encoders were the only source of feedback. LQG design

techniques were used to determine the estimator poles. [Ogata, Kwakernaak and

Sivan, Franklin and Powell].
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The servo systems for the robot use the following hardware:

1. The X axis is driven by an Aerotech #1410 servo motor through an NSK

ball screw with a 1 inch lead. The servo amplifier is a Copley Controls #240.

2. The Y axis is driven by an Aerotech #1410 servo motor through an NSK

ball screw with a 1 inch lead. The servo amplifier is a Copley Controls #240.

3. The Z axis is driven by an Aerotech #1410 servo motor through a 20 pitch

rack and pinion. The pinion has a pitch diameter of 1 inch. The servo

amplifier is a Copley Controls #240.

4. The Spin axis is directly driven by an Inland frameless torque motor #QT-

3102-A. The servo amplifier is a model #4020 from Aerotech.

5. The Pan axis is driven by an Inland frameless

through a 20 pitch spur gear reduction of 10 :

model #4020 from Aerotech.

6. The Tilt axis is driven by an Inland frameless

through a 20 pitch spur gear reduction of 15 :

model #4020 from Aerotech.

torque motor

1. The servo

torque motor

1. The servo

#QT-2404-A

amplifier is a

#QT-2404-A

amplifier is a

A.4 System Performance

The X and Y axes of the robot are each capable of about 2 G acceleration. Because

it does not have to carry the weight of the X and Y axes, the Z axis can accelerate

at more tIan 3 G unloaded. The first natural frequency of the robot when it is

not attached to the floor is around 50 Hz. When bolted to the floor, the robot has
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a first mode of 12 Hz. This mode is comprised essentially of the robot moving as a

rigid body with the floor (75 lb/ft load rating) acting as a spring. The worst case

structural stiffness of the cartesian axes is 4000 lb/inch. The rotary axes have a

minimum off axis stiffness of 5000 lb/inch and 3000 ft-lb/degree. On axis (servo)

stiffness is considerably lower. The combined structural stiffness of the 6 axes is

approximately 2000 lb/inch and 1000 ft-lb/degree. This system stiffness is at least

an order of magnitude higher than that of most commercially available robots of

comparable size. Because of dimensional problems with the cam followers, we were

unable to meet our -0.002 inch repeatability spec. The dimensional tolerances of

the cam followers are loose - up to 0.001 inch TIR. Our solution to this problem

was to buy more cam followers than we needed and select the best of the lot.

All of the followers we used had a runout of less than 0.00035 inch. Absolute

uncalibrated system accuracy was ±0.010 inch throughout the robot workspace

[Podiloff 85]. Repeatability was -0.006 inch. Had we calibrated the workspace,

we could have improved accuracy by 0.004 inch. High accuracy is important for

us because we intend to produce programs for this robot off line without using a

teachbox. Evaluation of the system's performance to date supports the concept

of including high stiffness in the design specifications. High stiffness facilitates

rapid, precise movement. High stiffness also appears to play an important role in

improving dynamic performance when the system is operating under alternative

control modes such as closed loop force of stiffness control.

We are reasonably satisfied with the robot we built. It does nearly everything we

called for in the original specs. Time will tell if it is well suited for assembly work.

However, when we build another one, we would certainly make some changes.

Most importantly, we would make the workspace smaller. Most assembly tasks

can be performed within a 1 foot cube. Most robots have larger workspaces simply
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to allow for accessing parts from many feeders. We believe that feeders should be

designed to deliver parts to the assembly robot rather having the robot reach for

them. If this were done, the robot could be made to be significantly smaller, and

hence faster, stiffer, and cheaper.

A number of design details deserve reevaluation. The connection between the

columns and the upper frame is a poor design. There is presently no good way

of adjusting the angle between these two components. Also, we were not able to

locate a shop that could easily grind the two mounting surfaces on the columns

square with each other. Redesigning this mounting surface to lie in the XZ plane

would probably solve both of these problems.

We would change our fabrication techniques slightly. All of the frame components

were stick welded. There is a considerable amount of distortion in the columns

and the base. Most of the welds should have been done with a TIG machine.

Careful fitup and shallow penetration would have minimized distortion while hav-

ing adequate strength. The extra welding cost would be recovered in the reduced

grinding costs. The moving axes should have been rehardened after welding. 6061

aluminum is gummy after being welded (annealed). This made some of the ma-

chining quite slow and difficult. The next set of motors we use on the robot will

have their endbells machined into the motor mounts. This saves weight, increases

stiffness, and reduces tolerance buildup. The motor mounts are separable form the

axes and are intended to be used only with one specific motor, so little flexibility

would be lost.
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Appendix B

The Computer Hardware

Three separate processors run simultaneously and divide the work of controlling

the robot. They share a common backplane which has a complement of interface

cards to connect to the outside world. A separate computer provides a develop-

ment environment and data storage.

The computer system is comprised of a Sun 3/180 Unix Workstation connected

to a VMEbus expansion box. The expansion box holds a system controller, three

single board processors, a digital to analog converter board, an analog to digital

converter board, five optical encoder reading cards, a digital I/O board, and extra

memory. The backplanes of the Sun and the VMEbus expansion box are connected

together so that data can be transferred to and from the Unix system.

The Sun 3/180 is used solely as a convenient development environment, it does

not deal with any of the robot control because Unix is not a real-time system.

All robot control is done by the single-board processors located on the VMEbus.

The software for the Sun (described in the next section) provides a simple user
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interface to the processor boards, runs the software compiler, and provides space

for permanent data storage. This section contains a description of the boards in

the system I used to perform the experiments described in this thesis.

1. Ironics IV-3273 System Controller:

All VMEbus systems require a board that mediates bus access and provides

functions such as a system reset and clocking.

2. Ironics IV-3201A Processor:

A single board, self-contained microcomputer. It is based on a 16 MHz

Motorola 68020 processor with a 68881 floating point coprocessor and one

megabyte of dynamic RAM. The Ironics processor card has several nice

features, including a mailbox for interrupt driven communication between

processor cards and dual-ported RAM that allows one processor card to

access the memory of another processor card without interrupting it. The

control system has three of these boards.

3. Motorola MVME 340A Parallel Interface/Timer Module:

The MVME board provides digital I/O for the robot system. It has 50 I/O

lines that can be used independently or in blocks of either 8, 16 or 32 for

parallel data transfer. In addition, there are 8 lines for handshaking, 6 lines

for timing functions and three 24 bit timers.

4. Data Translation DT1401 Interface Card:

The DT1401 is 12 bit A/D converter. It has 32 channels of A/D which can

either be used as 32 single-ended channels or as 16 differential channels. The

input range is either 0 to 10 volts or +10 volts. However, the board can

prescale the input by a factor of 1, 2, 4, or 8 which gives it an effective range

of either 1.25, 2.50, 5.00, or 10.0 volts. Each channel takes 10 microseconds
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to sample and 15 microseconds to convert a reading which gives an overall

sampling frequency of 40 kHz. Additionally, the DT1401 has two 12 bit

D/A converters that can be configured to be either unipolar or bipolar, 5 or

10 volts maximum. And the DT1401 has 16 lines of digital I/O.

5. Data Translation DT1406 DAC Card:

The DT1406 is a 12 bit D/A converter. It has 8 channels of D/A which can

be set for either 0 to 10 volt operation, or -10 to +10 volt operation. The

DT1406 is used to send control signals to the amplifiers.

6. Motorola Memory Board:

This board contains two megabytes of dual ported RAM that is memory

mapped onto the VMEbus. The memory available on the Ironics boards

is already adequate for robot control; this memory exists to facilitate com-

munications with the Sun. It provides a convenient place to store large

quantities of data.

7. Whedco Dual Channel Incremental Encoder Interface Card:

Each Whedco board provides two channels of encoder interface. The board

accepts single ended or differential signals, can be configured to provide

power to the optical encoders at 5 or 12 volts, and can be set for 1, 2, or

4 counts per line on the encoder. Position tracking is 32 bit, either 0 to

4,294,967,295 or ± 2,147,483,648 counts.
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Appendix C

The Computer Simulation

I felt that there were so many interacting variables in the assembly problem that

having control of them in a simulation was necessary. The goal of the simulation

was not to develop an extremely accurate model of the assembly process but rather

to build a tool that was accurate enough to generate qualitative information about

the behavior of the various assembly algorithms under the influence of different

system parameters such as friction, stiction, axis stiffness, and sensor errors. The

computer simulation represents the geometry of an idealized, 2 dimensional peg

and hole and includes the compliances of the robot.

C.1 Modeling Forces

The contact forces between the peg and the hole are calculated based on the

amount of overlap (if any) of the boundaries of the peg and the hole and stiffness

of the axes. For a simple peg and hole, there are only 4 points that need to be
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checked for contact: points a, b, c, and d in Figure C.1a. The contact forces are

determined by calculating the distance from each of the possible contact points to

the nearest boundary of the other part. If the distance is positive (no overlap) the

force is zero. If the distance is negative, the distance and the system stiffnesses in

X and 0 are used to calculate the contact force. The overlap and the associated

forces are shown, with the overlap greatly exaggerated, in Figure C.lb.

A physical model of this approach is a completely rigid robot and hole with a

peg made up from a rigid central core and a compliant cover. All deflection then

occurs in the peg, at the point of contact. For small deflections, this method is

far simpler and only slightly less accurate than attempting to more closely model

reality by allowing no part overlap and distributing the deflection throughout the

system.

C.2 Modeling Friction

Using a deterministic value for the effect of friction is adequate for simulating

many systems [Karnopp 85]. Using an estimate of the statistical properties of the

variation in system behavior due to friction is adequate for many more. LQG

(Linear Quadratic Gaussian) control theory is a good example [Kwakernak, Sivan

72]. In LQG design, friction (and many other sources of nonideal behavior) are

modeled as noise with a particular power spectral density. Unfortunately, no such

body of knowledge exists for assembly systems. In an attempt to be as accurate as

possible, I attempted to introduce the effects of friction into the system when and

where nature does - at the parts, at every move. I used a Gaussian distribution

with the tails clipped at 2 sigma. Figure C.2 shows the superposition of the
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commanded move and the distribution. The width of the distribution varies with

both the normal force and the coefficient of friction. I was comfortable with this

model right up to the point where we began running tests on the real system.

The model is probably good for some robots, but not for the MITPAR, at least in

its present configuration. With some regularity, controller overshoot and friction

resulted in the system settling well beyond the commanded position.

C.3 Choice of Computer Hardware and Lan-

guage

Common LISP was used because of the anticipated need for manipulating variable

length lists of data. This proved to be a good choice. The functions that used the

peg and hole geometries to generate the contact forces ended up looking a lot like

FORTRAN, but once the program was running, manipulating data was very easy.

The software development was done on a Model 3600 Symbolics Lisp Machine.

The simulation runs were done on a LISP Machine, a VAX 750, or a Sun 3/75,

depending primarily on the workload placed on the machines by other members

of my research group.

C.4 Comparison of Simulated and Real System

Behavior

The behavior of the assembly algorithm in the computer simulation and on the

real system was very similar. There were some surprises, however. Most of them
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were due to errors in the computer model. In the simulation, the bottom of the

peg was positioned over the center of the hole (to the precision of the computer),

but the real system was set up by eye. This caused the real system to reach

states that could not be reached by the computer simulation. After discovering

this problem I added a function to the assembly process that introduced random

errors in the initial X position of the peg (relative to the hole) that could be as

large as one half the clearance between the peg and the hole. The real system

typically reached about 50% more states than the simulation did as a result of

this change. Convergence was slowed correspondingly.

The big error in the simulation (which fortunately had little effect on the behavior

of the learning algorithm) was neglecting the effects of overshoot in the servos.

I developed a simple stochastic friction model with the (naive) assumption that

friction would only impede progress toward a goal position. In fact, if the system

has any tendency to overshoot, friction can cause the final resting position of

the axis to be beyond the setpoint. For most of the assembly cases there was

relatively little information in the Fz and AFZ/AZ states in the simulation even

with what turned out to be an unreasonably conservative model of friction. On

the real system, overshoot, friction, and the small angles of contact reduced the

useful resolution of the F, and AF./AZ states from 2 in the simulation to 0 in

the real system for many of the assemblies. The F, and AF,/AZ states contained

useful information only when the peg came close to jamming. These were very

low clearance ratio ( 0.01) assemblies using large initial errors (- 5 degrees).
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Assembly Algorithm Code

Much of the code that was written for this thesis is either implementation depen-

,'ient, embarrassing, or both. In particular, there are many patches in the code

that were necessary to get around timing problems caused by the many differ-

ent ways that the different components (Section C.3) almost, but didn't quite,

meet their published specs. The code also suffers the usual problems of devel-

opmental code - paths to nowhere, unused functions, and violated abstraction

barriers. For the sake of clarity and brevity I am therefore including in this ap-

pendix only the functions at the core of the learning algorithm. These functions

are MOVEDRIVER(), BESTMOVE(), and INSERTNEW.DATA().

The MOVEDRIVER() function contains the logic branching structure. It corre-

sponds to the Performance Element defined in [Smith, et. al. 77]. The starred

comment lines are used to point out the correspondence between parts of the code

and the block diagram in Figure 2.3.

int
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movedriver()
{
/* wait between moves until the system has settled ( the forces are */
/* within +/-0.05 lbs for more than one cycle of the lowest natural */
/* frequency of the system) */

while (movetime.counter > move.rate) II settled) {

/******************(block 4, Flow Chart)*************************/

/* check to see if we have hit bottom */
if (z.grip < (Z.FINISHPOSITION + LARGEST.EXPECTED.Z.ERROR)

k& (fabs((double)z.force) > fabs((double)Z.FINISH.FORCE))) {
done = YES;
success = YES;
assembly.number++;
insert.new.assembly.data(data.for.this.assembly);
printf("This was a successful assembly\n");

/******************(block 7, Flow Chart)*************************/
break;

}

/******************(block 5, Flow Chart)*************************/
if (forcesok()) {

/* do nothing because no corrective moves were made during the last */
/* call to move.driver() */

if (z.move.direction == 0);

/* xmove.direction a= I means that the corrective move made */
/* in the first X direction tried was successful. More than */
/* corrective move is allowed, so the direction is multiplied */
/* by the number of moves made */

else if (x.move.direction == i) {
data.for.thisassembly visited.state.counter].move

= (float)first.x.direction * xLmoves;
visited.state.counter++;
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sum-_of-xmoves += first.xdirection * ximoves;

xmovedirection = 0;
t.move.direction = 0;
totalx.moves += xlmoves;
total-t.moves += t-moves;
xi-moves = 0;
x2_moves = 0;
t.moves a 0;

}
/* x.moveodirection == 2 moans that the corrective move made */
/* in the first X direction tried was unsuccessful. */

else if (x.moveodirection == 2) {
data.-for.this.assembly lvisitedstate.counter]. move

= (float)(-fiirst..diroction * x2.moves);
visitod.state.counter++;
sumof-_zmoves += -first.x.direction * x2.moves;
x.moveodirection = 0;
t-move.direction = 0;
totalxm.zoves += (2 * ximoves + x2.moves);
total.t-moves += tmoves;
x2_moves a 0;
x2.moves = 0;
tmoves - 0;

}
elso

printf("something is wrong with the moveodriver");

/* for calculating the force derivatives. The data from the force */
/* sonsor is sampled several times after each move and then averaged */

old.x.force = filtered.x.force;
old.t.force = filteredt.force;

/******************(block 2, Flow Chart)*************************/
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z.grip = z-grip - INCREMENT.IN.Z;

} indices

/* it the forces are not ok, a corrective move must be made. */
/* Different branches will be followed depending on the recent */
/* behavior of the system. */

/* If the forces got too high during the last move in Z */
if (x.move.direction == 0 && tmovedirection == 0) {

/* store the system position state so it can be recovered */
/* if the forces go up with the first I move */

x.position.zero = x.grip;
t.position.zero = t-grip;

/* set random corrective move directions */

set.directions();

/*calculate the discritized values of the states */
set-indices();

/* store the state information */
/* (forces, force derivatives, and Z) */
data.for.this.assembly visited.state.counter. index 0O
= xforceindex;
data.for.this.assembly[visitedastate.counter. index [i
= tforce.indez;
data.for.this.assembly visited-state.counterJ.index 2]
= x.forcederivative.index;

data.for.this.assembly [visited.statecounter. index [3
* t.force.derivative.index;

data.for.this.assembly visited.state-counter. index 4]
= z.position-index;

/*****************(block 6, Flow Chart)************************/

if (using.past.experience)
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first.x-direction = best-move();

/***************** (block 3, Flow Chart)************************/

x.grip = (x.grip + (first.x.direction * INCREMENTINIX));
xmove.direction - 1;
xlmoves++;
printf ("i\n");

else if((x.move.direction -- 1)
&& good-move) {

x.grip a (z-grip + (first.x.direction
xzimaoves++;

printf("2\n");

kk (t-move.direction -- 0)

* INCREMENT.INX));

else if((zxmove.direction -- 1) &t (t.movoedirection -a 0)
At C'good.move)) {

t-move.direction - 1;
t-grip = (t.grip + (t.direction.for.first.z * INCREMWNT._I.T));
x.grip = x.grip + 4 * t.direction.jor.first.z * INCREKET._IIT;
tmoves++;
print ("'3\n");

}
else if((x.move.direction -u 1) ft (tmove.direction -- 1)
AU good.move) {

t.grip a (t_-rip + (t.direction.jor.first.x * INCREMENTINIT));
xgrip az.grip + 4 * t-direction.for-first.x * INCREMENTEINT;
t.moves++;
printf("4\n");

}
else if((x.move.direction -- 1) U (t.move.direction -n 1)
U (C!good.move)) {

t.move.direction 2;
t.grip a (t-_rip - (t.direction.for.first.x * INCREMENT.INT));
x•grip = x-grip - 4 * t-direction.for.first.x * INCRENT.MINT;
t_moves++;
printf("5\n");

}
else if((x.move-direction an 1) U (t.move.direction -a 2)
Ut goodmove) {
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t.grip = (t.grip - (t.directionifor-first.x * INCREMENT.IN.T));
x-grip = xgrip - 4 * t.direction.forfirst.z * INCREMENTIN.T;
tmoves++;
printf("6\n");

}
else if((x-move.direction == 1) &k (t-move.direction == 2)
&& (!good.move)) {

xzmove.direction = 2;
undo.moves = YES;
printf("7\n");

}
else if((xzmove-direction == 2) && (t-move.direction == 0)
t& good.move) {

x.grip = (x.grip - (first.x.direction * INCREMENT.IN_.)));
x2_moves++;
printf("8\n");

}
else if((x.move.direction == 2) k (t.move.direction == 0)
kk (!good.move)) {

t.move.direction - 1;
t-grip a (t-grip + (t.direction.forsecond.x * INCREMEINTIN.T));
x-grip = xzgrip + 4 * t.direction.for.second_x * INCREMNENTINT;
tLmoves++;
printf("9\n");

}
else if((x.move.direction =- 2) Ut (t.move.direction a n1)
at good.move) {

t-grip n (t.grip + (t.direction.for.second.x * INCREMENT.II.T));
xzgrip = x-grip + 4 * t.direction.for.secondxz * INCREMENT.IN.T;
t.movoe++;
printf("10\n");

}
else if((x.move.direction == 2) &U (t.move.diroction == 1)
&& (!goodmove)) {

t-move.direction 2;
tgrip = (t.grip - (t.direction.for.second.x * INCREMENT.INT));
x.grip = x.grip + 4 * t-diroction.for.second_x * INCREMENT.IN.T;
t.moves++;
printf("11\n ") ;
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else if((x_movedirection -- 2) Ut (t -movedirection -a 2)
LA good.move) {

t.grip - (tgrip - (t.direction.for.second.x * INCREMENTINT));
x-grip = zxgrip - 4 * t.direction.forsecond_x * INCREMENT_INT;
tmoveo++;
printf("to\n");

}
else if((xmove.direction a 2) &t (tmove.diroction 2)
t& (!good.move)) {

failures - failures + 1;
printf("The assembly failed\n");
success * NO;
done - YES;

}
}

/* Set the new positions to servo to */

servo.tol0) * zxgrip + relative-coordinates[OJ;
servoeto[2J a zgrip + relative-coordinates[2J;
servoeto[5] - t.grip + relativecoordinates 5];

The function BEST.MOVE simply sorts through the tist of visited states to see if
the state the system is presently in has been visited before. If it has, the direction
that has been the most successful in previous assemblies is returned. If the state
is being visited for the first time, the function generates a random response.

int
bestmove()

int i, j, k;
float sum;

/* While looking at states that have been visited, compare the */
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/* indices. If they all match, add up all of the previous moves. */
/* If none of the states match, roll the dice... ,/

i = 0;

while (data.arrayli).number.of.visits != ) {

if((data.arrayi) .index[l0 =n x.force.index)
ka (data.arrayi) .index[l] == t.forceindex)
aU (data.array[iJ.indexl[2J = x.force.derivative.index)
ka (data.array[i). indexz3] =f t-force-derivativeindex)
Ut (data.arrayiJ .indexz4] == z.position.index)) (

/* differentiating between number.of.visits is not really */
/* be necessary until BOLD moves are attempted. */

printf("'T"); /* make the terminal beep */
for(k O0; k ; 500000; k++); /* pause */
printf("T"); /* make the terminal beep */
printf("***********visited this state before************\n");
totalstates++;

if(data.array[i).number.of-visits < NUMBER.OF.SAVEDJMOVES) {
sum = 0.0;
for(j = 0; j < data.array[i].numberof.visits; j++)

sum += (float)dataarray[i) .correctivemove[j] ;

if((sum / data.arrayli).number.of.visits) >= 0.0)
return(1);

else
return(-1);

}
*lse {

sum - 0.0;
for(j = 0; j < rUMBEROF.SAVEDM.OVES; j++)

sum += data.array[li.correctivemovelj] ;
i:((sum / data.array[i).number.of.visits) >= 0.0)

return(1);
else

return(-1);
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}
}
i++;

}
printf("T"); /* make the terminal beep */
printf("***this is a new state***\n");
new.states++;
total.states++;
return (random.plus.or..minus.aon*());

The function INSERTLNEW.DATA goes through the data list after each successful
assembly and adds the new assembly data to the list. If a state was visited for
the first time, it's indices are added to the end of the list.

int
insert.new.data()
{

int i, j, k, n;
int match;
int this.move;

printf("number of branch points = Xd\n",visited.state.counter);

for (i = 0; i < visitedstate.counter; i++) {
this.move a (int)data.for.this.assembly[iJ.move;

/* stop through all of the previously visited states */
/* to see if we have been there before

match = NQ;
j = 0;

while(data.array[j].number.of-visits != 0) {
match = YES;

n = 0;
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/* step through the indices to see if they all match. */
while (match kt n < NUMBER.OFINDICES) {

if (data.-for.this-assembly Cil. index [n]
!= dataarray[Cj .index[n])

match = NO;

n++;

}

/* If all of the indices match, insert the data into the */
/* data.array . Otherwise, continue until the loop gets */
/* to a state that has not been visited yet */
/* before inserting the data ,/

if (match) {
/* replace the oldest piece of data with the new dai.a */

k n data.array[j] .number.of.visits++;
data.array[j].corrective.move[(k % NUMBER.OF.SAVED.NOVES)]
= sumrof.x.movos;

sum.ofx..moves -= this.move;
break;

}
else (

j++;
if (j == MAXVISITED.STATES)
printf("out of visited states\n");

}
}
if (!match) {

/* If the program gets here, there was no match of indices */
/* ( visits = 0). The new state is then added to the data.array */
/* printf("no match for i = Wd\n", i); */

new.visited.states++;
for (k = 0; k < NUMBER.OF.INDICES; k++)

data.array[j]. index [k]
= data-forthisassembly [iJ. index [k] ;
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data.array[j. corrective-move[OJ = sumof.x.moves;
sumo,_xmoves -= this.move;

/* printf("sum of directions for no match = %d\n", sum-ofxzmoves); */
data.array[j].numberofvisits = 1;




