242 research outputs found

    Comprehensive theory of the relative phase in atom-field interactions

    Full text link
    We explore the role played by the quantum relative phase in a well-known model of atom-field interaction, namely, the Dicke model. We introduce an appropriate polar decomposition of the atom-field relative amplitudes that leads to a truly Hermitian relative-phase operator, whose eigenstates correctly describe the phase properties, as we demonstrate by studying the positive operator-valued measure derived from it. We find the probability distribution for this relative phase and, by resorting to a numerical procedure, we study its time evolution.Comment: 20 pages, 4 figures, submitted to Phys. Rev.

    Sampling functions for multimode homodyne tomography with a single local oscillator

    Full text link
    We derive various sampling functions for multimode homodyne tomography with a single local oscillator. These functions allow us to sample multimode s-parametrized quasidistributions, density matrix elements in Fock basis, and s-ordered moments of arbitrary order directly from the measured quadrature statistics. The inevitable experimental losses can be compensated by proper modification of the sampling functions. Results of Monte Carlo simulations for squeezed three-mode state are reported and the feasibility of reconstruction of the three-mode Q-function and s-ordered moments from 10^7 sampled data is demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.

    Approximation with Random Bases: Pro et Contra

    Full text link
    In this work we discuss the problem of selecting suitable approximators from families of parameterized elementary functions that are known to be dense in a Hilbert space of functions. We consider and analyze published procedures, both randomized and deterministic, for selecting elements from these families that have been shown to ensure the rate of convergence in L2L_2 norm of order O(1/N)O(1/N), where NN is the number of elements. We show that both randomized and deterministic procedures are successful if additional information about the families of functions to be approximated is provided. In the absence of such additional information one may observe exponential growth of the number of terms needed to approximate the function and/or extreme sensitivity of the outcome of the approximation to parameters. Implications of our analysis for applications of neural networks in modeling and control are illustrated with examples.Comment: arXiv admin note: text overlap with arXiv:0905.067

    Fast Computation of Fourier Integral Operators

    Get PDF
    We introduce a general purpose algorithm for rapidly computing certain types of oscillatory integrals which frequently arise in problems connected to wave propagation and general hyperbolic equations. The problem is to evaluate numerically a so-called Fourier integral operator (FIO) of the form e2πiΦ(x,ξ)a(x,ξ)f^(ξ)dξ\int e^{2\pi i \Phi(x,\xi)} a(x,\xi) \hat{f}(\xi) \mathrm{d}\xi at points given on a Cartesian grid. Here, ξ\xi is a frequency variable, f^(ξ)\hat f(\xi) is the Fourier transform of the input ff, a(x,ξ)a(x,\xi) is an amplitude and Φ(x,ξ)\Phi(x,\xi) is a phase function, which is typically as large as ξ|\xi|; hence the integral is highly oscillatory at high frequencies. Because an FIO is a dense matrix, a naive matrix vector product with an input given on a Cartesian grid of size NN by NN would require O(N4)O(N^4) operations. This paper develops a new numerical algorithm which requires O(N2.5logN)O(N^{2.5} \log N) operations, and as low as O(N)O(\sqrt{N}) in storage space. It operates by localizing the integral over polar wedges with small angular aperture in the frequency plane. On each wedge, the algorithm factorizes the kernel e2πiΦ(x,ξ)a(x,ξ)e^{2 \pi i \Phi(x,\xi)} a(x,\xi) into two components: 1) a diffeomorphism which is handled by means of a nonuniform FFT and 2) a residual factor which is handled by numerical separation of the spatial and frequency variables. The key to the complexity and accuracy estimates is that the separation rank of the residual kernel is \emph{provably independent of the problem size}. Several numerical examples demonstrate the efficiency and accuracy of the proposed methodology. We also discuss the potential of our ideas for various applications such as reflection seismology.Comment: 31 pages, 3 figure
    corecore