64,562 research outputs found

    On periodicity of generalized two-dimensional infinite words

    Get PDF
    AbstractA generalized two-dimensional word is a function on Z2 with a finite number of values. The main problem we are interested in is periodicity of two-dimensional words satisfying some local conditions. Let A be a matrix of order n. The function φ:Z2→Rn is a generalized centered function of radius r with the matrix A if∑y∈Z2:0<|y-x|⩽r-35ptφ(y)=φ(x)Afor every x∈Z2, where for x=(x1,x2), y=(y1,y2) we have |y-x|=|y1-x1|+|y2-x2|. We prove that every generalized centered function of radius r>1 with a finite number of values is periodic. For r=1 the existence of non-periodic generalized centered functions depends on the spectrum of the matrix A. Similar results are obtained for the infinite triangular and hexagonal grids

    Properties of Two-Dimensional Words

    Get PDF
    Combinatorics on words in one dimension is a well-studied subfield of theoretical computer science with its origins in the early 20th century. However, the closely-related study of two-dimensional words is not as popular, even though many results seem naturally extendable from the one-dimensional case. This thesis investigates various properties of these two-dimensional words. In the early 1960s, Roger Lyndon and Marcel-Paul Schutzenberger developed two famous results on conditions where nontrivial prefixes and suffixes of a one-dimensional word are identical and on conditions where two one-dimensional words commute. Here, the theorems of Lyndon and Schutzenberger are extended in the one-dimensional case to include a number of additional equivalent conditions. One such condition is shown to be equivalent to the defect theorem from formal languages and coding theory. The same theorems of Lyndon and Schutzenberger are then generalized to the two-dimensional case. The study of two-dimensional words continues by considering primitivity and periodicity in two dimensions, where a method is developed to enumerate two-dimensional primitive words. An efficient computer algorithm is presented to assist with checking the property of primitivity in two dimensions. Finally, borders in both one and two dimensions are considered, with some results being proved and others being offered as suggestions for future work. Another efficient algorithm is presented to assist with checking whether a two-dimensional word is bordered. The thesis concludes with a selection of open problems and an appendix containing extensive data related to one such open problem

    Properties of Two-Dimensional Words

    Get PDF
    Combinatorics on words in one dimension is a well-studied subfield of theoretical computer science with its origins in the early 20th century. However, the closely-related study of two-dimensional words is not as popular, even though many results seem naturally extendable from the one-dimensional case. This thesis investigates various properties of these two-dimensional words. In the early 1960s, Roger Lyndon and Marcel-Paul Schutzenberger developed two famous results on conditions where nontrivial prefixes and suffixes of a one-dimensional word are identical and on conditions where two one-dimensional words commute. Here, the theorems of Lyndon and Schutzenberger are extended in the one-dimensional case to include a number of additional equivalent conditions. One such condition is shown to be equivalent to the defect theorem from formal languages and coding theory. The same theorems of Lyndon and Schutzenberger are then generalized to the two-dimensional case. The study of two-dimensional words continues by considering primitivity and periodicity in two dimensions, where a method is developed to enumerate two-dimensional primitive words. An efficient computer algorithm is presented to assist with checking the property of primitivity in two dimensions. Finally, borders in both one and two dimensions are considered, with some results being proved and others being offered as suggestions for future work. Another efficient algorithm is presented to assist with checking whether a two-dimensional word is bordered. The thesis concludes with a selection of open problems and an appendix containing extensive data related to one such open problem

    Upper Bound on the Products of Particle Interactions in Cellular Automata

    Full text link
    Particle-like objects are observed to propagate and interact in many spatially extended dynamical systems. For one of the simplest classes of such systems, one-dimensional cellular automata, we establish a rigorous upper bound on the number of distinct products that these interactions can generate. The upper bound is controlled by the structural complexity of the interacting particles---a quantity which is defined here and which measures the amount of spatio-temporal information that a particle stores. Along the way we establish a number of properties of domains and particles that follow from the computational mechanics analysis of cellular automata; thereby elucidating why that approach is of general utility. The upper bound is tested against several relatively complex domain-particle cellular automata and found to be tight.Comment: 17 pages, 12 figures, 3 tables, http://www.santafe.edu/projects/CompMech/papers/ub.html V2: References and accompanying text modified, to comply with legal demands arising from on-going intellectual property litigation among third parties. V3: Accepted for publication in Physica D. References added and other small changes made per referee suggestion

    Nivat's conjecture holds for sums of two periodic configurations

    Full text link
    Nivat's conjecture is a long-standing open combinatorial problem. It concerns two-dimensional configurations, that is, maps Z2→A\mathbb Z^2 \rightarrow \mathcal A where A\mathcal A is a finite set of symbols. Such configurations are often understood as colorings of a two-dimensional square grid. Let Pc(m,n)P_c(m,n) denote the number of distinct m×nm \times n block patterns occurring in a configuration cc. Configurations satisfying Pc(m,n)≤mnP_c(m,n) \leq mn for some m,n∈Nm,n \in \mathbb N are said to have low rectangular complexity. Nivat conjectured that such configurations are necessarily periodic. Recently, Kari and the author showed that low complexity configurations can be decomposed into a sum of periodic configurations. In this paper we show that if there are at most two components, Nivat's conjecture holds. As a corollary we obtain an alternative proof of a result of Cyr and Kra: If there exist m,n∈Nm,n \in \mathbb N such that Pc(m,n)≤mn/2P_c(m,n) \leq mn/2, then cc is periodic. The technique used in this paper combines the algebraic approach of Kari and the author with balanced sets of Cyr and Kra.Comment: Accepted for SOFSEM 2018. This version includes an appendix with proofs. 12 pages + references + appendi

    Multidimensional extension of the Morse--Hedlund theorem

    Full text link
    A celebrated result of Morse and Hedlund, stated in 1938, asserts that a sequence xx over a finite alphabet is ultimately periodic if and only if, for some nn, the number of different factors of length nn appearing in xx is less than n+1n+1. Attempts to extend this fundamental result, for example, to higher dimensions, have been considered during the last fifteen years. Let d≥2d\ge 2. A legitimate extension to a multidimensional setting of the notion of periodicity is to consider sets of \ZZ^d definable by a first order formula in the Presburger arithmetic . With this latter notion and using a powerful criterion due to Muchnik, we exhibit a complete extension of the Morse--Hedlund theorem to an arbitrary dimension $d$ and characterize sets of $\ZZ^d$ definable in in terms of some functions counting recurrent blocks, that is, blocks occurring infinitely often

    Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory

    Full text link
    In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In this paper we summarise some of the major achievements, rigorously proven also in several recent peer-reviewed papers, of this innovative formulation of quantum particle physics.Comment: 35 page
    • …
    corecore