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A generalized two-dimensionalword is a function onZ2 with a finite number of values. The

main problemwe are interested in is periodicity of two-dimensionalwords satisfying some

local conditions. Let A be a matrix of order n. The function ϕ : Z2 → Rn is a generalized

centered function of radius r with the matrix A if
∑

y∈Z2:0<|y−x| � r

ϕ(y) = ϕ(x)A

for everyx ∈ Z2,where forx = (x1, x2),y = (y1, y2)wehave |y − x| = |y1 − x1| + |y2 −
x2|.We prove that every generalized centered function of radius r > 1with a finite number

of values is periodic. For r = 1 the existence of non-periodic generalized centered functions

depends on the spectrum of the matrix A. Similar results are obtained for the infinite

triangular and hexagonal grids.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The study of local conditions ensuring periodicity is an important problem for the combinatorics on words, both in the

one-dimensional and two-dimensional case. One of the principle results of combinatorics onwords, the Critical Factorization

Theorem, relates local periodicities of a word to its global periodicity. It was first proved by Cesari and Vincent, and in the

present form it is due to Duval [3,5]. Connections between local and global periodicity are studied well, see also [11,9] and

[7] for a multidimensional extension.

Some questions about periodicity become much more difficult in dimensions higher than one. One of such questions is

the connection between local complexity and periodicity. For a k-dimensionalwordω its complexity function pω(n1, . . . , nk)
counts the number of distinct n1 × · · · × nk blocks inω. In the one-dimensional case it is known that if there exist an integer

n such that pω(n)� n, then ω is periodic (Morse and Hedlund [10]). For k = 2 the following hypothesis is known as Nivat’s

conjecture [12]: if there exists a pair (n,m) such that the complexity function pω(n,m) of a two-dimensional wordω satisfies

the condition pω(n,m)�mn, then ω has at least a periodicity vector. Weak forms of the conjecture for pω(n,m)�mn/144
and for pω(n,m)�mn/16 were proved by Epifanio, Koskas, Mignosi in [6] and by Quas and Zamboni in [17], respectively. In

[2] V. Berthe and L. Vuillon explore the notion ofminimal complexity for two-dimensional sequences, in particular, they give

an example of two-dimensional sequence of complexity pω(n,m) = mn + m, for every (m, n), which is uniformly recurrent

and which has no rational periodic direction.

Weconsider somespecial types of two-dimensionalwords as functions onvertices of the graphsof the infinite rectangular,

triangular and hexagonal grids. Let G = (V , E) be a graph. The distance between two vertices x and y, denoted by d(x, y),

�
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is the usual graph metric, i.e., the number of edges in the shortest path connecting these vertices. A ball Br(x) of radius r

centered at the vertex x is defined in the following way: Br(x) = {y ∈ V | d(x, y)� r}.
Let A = (aij)

n
i,j=1 be an integer matrix. A function ϕ : V → Rn is called generalized centered function of radius r with the

matrix A if∑
y∈Br(x), y /=x

ϕ(y) = ϕ(x)A

for every x ∈ V .

Notice that if n = 1, then A is an eigenvalue of the graph G and generalized centered function is an eigenvector corre-

sponding to eigenvalue A [4].

In fact, the notion of a generalized centered function is a generalization of the notions of a perfect coloring and of an

ordinary centered function. A coloring of the graph G into n colors is a function f : V → {1, .., n}. Let A = (aij)
n
i,j=1 be an

integer nonnegative matrix, r an integer, r ≥ 1. A coloring of vertices of a graph G with n colors is called perfect of radius r

with the matrix A, if for every vertex of a color i the number of vertices of a color j at distance at most r from the vertex of a

color i does not depend on the vertex and is equal to aij . A perfect coloring with n colors with the matrix A can be considered

as a generalized centered function with the value area {e1, . . . , en}, where ei is a unit vector with 1 in its i-th coordinate. The

notion of a perfect coloring naturally arises in different fields of mathematics, such as algebraic combinatorics, graph theory

and coding theory. Properties of perfect colorings had been studied under different names, e.g. equitable partitions (see, for

example, [8]).

A function f : V(G) → R is called centered of radius r if the sum of its values in every ball of radius r is equal to 0. An

ordinary centered function can be considered as a generalized centered function for n = 1, A = −1. The notion of a centered

function was introduced as a generalization of the notion of a perfect code in the hypercube Hn [1]. The notion of a perfect

coloring also generalizes the notion of a perfect code and several other well-known codes, such as the Preparata code, a

completely regular code, a uniformly packed code. Namely, these codes can be interpreted as perfect colorings into two or

more colors. This means that generalized centered functions can be used as an instrument for studying perfect colorings and

different codes.

In thispaper, theperiodicityofgeneralizedcentered functions is studied. In theone-dimensional casegeneralizedcentered

functions are periodic, the question is non-trivial in dimensions higher than 1. We prove that every generalized centered

function of radius r > 1 with a finite number of values on the infinite rectangular grid is periodic. For r = 1, generalized

centered functionwith thematrix A such that det A /= 0 is also periodic. If r = 1 and det A = 0, then there exist non-periodic

and periodic generalized centered functions. Similar results are obtained for the infinite triangular and hexagonal grids.

These results are obtained using themethod of R-prolongable words, which had been earlier used for obtaining some results

about periodicity of perfect colorings and ordinary centered functions [16,13,14]. The results of this paper generalize some

previous results, present them in new general notation and explain them in a convenient linear-algebraic form. The property

of periodicity in different meanings have been studied for a long time. There exist many methods of proving periodicity and

many theorems about periodicity of different types of words. In this paper we develop the method of R-prolongable words

for proving periodicity of words with local conditions.

2. The infinite rectangular grid

The graph of the infinite rectangular grid is 4-regular, its vertices are all possible ordered pairs of integers. Two vertices

x = (x1, x2) and y = (y1, y2) are adjacent if |x1 − y1| + |x2 − y2| = 1.

Let ϕ be a function from Z2 to Rn, i.e., ϕ(x) is a vector of length n. Denote the i-th coordinate of ϕ(x) by ϕi(x): ϕ(x) =
(ϕ1(x), . . . ,ϕn(x)). We study generalized centered functions on Z2 with a finite number of values. These functions can be

considered as two-dimensional words over the finite alphabet� of the values of such functions,� ⊂ Rn.

Define the operation of addition in the usual way: x + z = (x1 + z1, x2 + z2). A two-dimensional word ω is v-periodic

(or v is a vector of periodicity of the word ω) if ω(x + v) = ω(x) for all x ∈ Z2. A two-dimensional word that is v- and

u-periodic for some noncollinear v and u is called periodic. It is easy to show that we can take v = (p, p), u = (q,−q) for
some integers p and q.

We say that a two-dimensional word ω is R-prolongable if for any x, y ∈ Z2 an equality ω|BR(x) = ω|BR(y) implies

ω|BR+1(x) = ω|BR+1(y). The notation ω|BR(x) = ω|BR(y) means that ω(x + z) = ω(y + z) for |z| � R.

The following lemma gives the idea of the method of R-prolongable words:

Lemma 1. Let ω be a two-dimensional word on a finite alphabet. If ω is R-prolongable for some R ≥ 0, then ω is periodic.

The proof of this lemma is simple and can be found in [16]. This lemma means that we can prove R-prolongability of

two-dimensional words instead of periodicity.

Let ϕ : V → Rn be a generalized centered function with a finite number of values. Denote by � the alphabet of values

of the function ϕ,� ⊂ Rn, |�| < ∞. We will use the following notation:

�1 = {v | v = v1 − v2, vi ∈ �, i = 1, 2},
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�′ = {v | v = v1 + v2 − v3, vi ∈ �, i = 1, 2, 3},
�′′ = {v | v = v1 + v2 − v3, vi ∈ �′, i = 1, 2, 3}.

Notice that the sum of generalized centered functions is a generalized centered function with the same matrix.

In the further textwewillwrite “an (A, r)-function" instead of “a generalized centered function of radius rwith thematrix

Awith a finite number of values" for short.

In this section, we study the periodicity of (A, r)-functions on the infinite rectangular grid depending on the radius r and

the matrix A.

Remark. Note that in the one-dimensional case every (A, r)-function is periodic. If we consider a subword ϕ(i − r) . . .
ϕ(i + r − 1) of length 2r, then the values ϕ(i − r − 1) and ϕ(i + r) are uniquely determined by the definition of

(A, r)-function. The alphabet is finite, so the periodicity follows. Thus the question is trivial in the one-dimensional case.

Proposition 1. Every (A, r)-function on the infinite rectangular grid is periodic for r > 1.

This fact is a generalization of results obtained in [16,15].

Proof. We need some notation to prove the proposition.

A sphere Sρ(x) of radius ρ with the center at the vertex x is defined in the following way: Sρ(x) = {y ∈ V | d(x, y) = ρ}.
Every sphere consists of five sets of vertices: Sρ(x) = ⋃5

i=1 S
i
ρ(x), where

S1ρ(x) = {(x1, x2)+ (j, j − ρ)|j = 1, 2, . . . , ρ},
S2ρ(x) = {(x1, x2)+ (−j, j − ρ)|j = 1, 2, . . . , ρ},
S3ρ(x) = {(x1, x2)+ (j, ρ − j)|j = 1, 2, . . . , ρ},
S4ρ(x) = {(x1, x2)+ (−j, ρ − j)|j = 1, . . . , ρ},
S5ρ(x) = {(x1, x2)+ (0,−ρ), (x1, x2)+ (0, ρ), (x1, x2)+ (ρ , 0), (x1, x2)+ (−ρ , 0)}.

In Fig. 1, we can see a ball B5(x) of radius 5, its boundary is marked by bold. Vertices from each set Si6(x) of the sphere

S6(x) are marked by i. A function on vertices of a flat graph can be considered as a function on faces of dual graph. Notice

that the graph of the infinite rectangular grid is self-dual, so the pictures illustrate functions on faces instead of vertices.

Denotem = min{|vi| | v = (v1, .., vn) ∈ �1, vi /= 0},M = max{|vi| | v = (v1, .., vn) ∈ �1}.
Due to Lemma 1 it is sufficient to prove that ϕ is R-prolongable for some R > r. We will prove it for

R > (2r + 1)2rM/m + 2r.

Consider two arbitrary balls BR(x) and BR(y) such that ϕ|BR(x) = ϕ|BR(y). It suffices to prove that ϕ|SR+1(x) = ϕ|SR+1(y).

Consider the function

ψ(t) = ϕ(x + t)− ϕ(y + t).

Fig. 1. A ball B5(x) of radius 5 and the sets Si6(x), i = 1, . . . , 5.
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Fig. 2. The illustration for the proof of Proposition 1 for R = 5, r = 2.

Wehaveψ |BR(0) = 0bydefinitionof the functionψ . Toprove thatϕ isR-prolongable it suffices toprove thatψ |SR+1(0) = 0.

Notice that the functionψ has a finite number of values, the alphabet of its values is�1.

First we will prove thatψ(z) = 0 for z ∈ S1R+1.

Denote a(i) = ψ(i, i − 1 − R), i = 1, . . . , R. Fig. 2 illustrates our reasoning for the case R = 5, r = 2. By definition of

generalized centered function we have

ψ(j, j − 1 + r − R)A = ∑

(x, y) ∈ Br(j, j − 1 + r − R),
(x, y) /= (j, j − 1 + r − R)

ψ(x, y).

It holds ψ |BR(0) = 0, so ψ(j, j − 1 + r − R) = 0, thus we get
∑j+r

i=j a(i) = 0, j = 1, . . . , R − r. Therefore a(j + r + 1) =
a(j) for every 1� j � R − r − 1, i.e., the sequence a(i) is periodic with period (r + 1).

Suppose that there exists z ∈ S1R+1 such thatψ(z) /= 0. Thismeans that there exists i : 1� i � R such that a(i) /= 0. Denote

a(i) = d. Therefore a(i + k(r + 1)) = d,

i+r+k(r+1)∑
j=i+1+k(r+1)

a(j) = −d (1)

for every k with 1� i + k(r + 1)� R − r.

Nowwe consider elements of the sphere SR+2(0), more precisely, the set S1R+2(0). Denote the values of the functionψ in

the vertices of this set in the following way: b(i) = ψ(i, i − 2 − R), i = 1, . . . , R + 1 (see Fig. 2). Consider the balls Br(v
k),

vk = (i + 1 + k(r + 1), i − 1 − R + r + k(r + 1)), where k ∈ Z, 1� i + 1 + k(r + 1)� R − r + 2. In Fig. 3, we can see a

part of the ball BR(0) of radius R = 17 and five balls Br(v
k) of radius r = 2. Boundaries of balls are marked by bold line.

Now we are going to apply the definition of a generalized centered function to the vertex vk . The ball Br(v
k) consists of

vertices which have values zero in the ball BR(0), vertices from Br(v
k)

⋂
SR+1(0), which are marked by black circles in Fig.

3 (vertices which have the values a(i + 1 + k(r + 1)), . . . , a(i + r + k(r + 1))), and vertices from Ak = Br(v
k)

⋂
SR+2(0),

which are marked by white circles in Fig. 3 (vertices which have the values b(i + 1 + k(r + 1)), . . . , b(i + (k + 1)(r + 1))).
By definition of generalized centered function we have

ψ(vk)A = ∑

x ∈ Br(v
k)\vk

ψ(x).

Combining it with (1), we get

i+r+1+k(r+1)∑
j=i+1+k(r+1)

b(j) = d. (2)

The set S1R+2(0) can be represented as a union of disjoint sets Ak and the set D of vertices in S1R+2(0) that do not belong

to one of the sets Ak (boundary effects):

S1R+2(0) = ⋃
k

Ak ∪ D, 1� i + k(r + 1)� R − r + 2.
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Fig. 3. The illustration for the proof of Proposition 1: part of the ball BR(0) and five balls Br(v
i), R = 17, r = 2. Black circles mark Br(v

2)
⋂

SR+1(0), white

circles mark Br(v
2)

⋂
SR+2(0).

In Fig. 3, the set D consists of three vertices u1, u2, u3. The number of elements in the set D is not more than 2r: |D| � 2r,

denote
∑

x∈Dψ(x) = c.

Let us calculate the sum of the values in the set S1R+2(0):

∑

x∈S1R+2(0)

ψ(x) =
R∑

j=1

b(j) = ∑
k

∑
x∈Ak

ψ(x)+ ∑
x∈D

ψ(x) = kd + c.

Consider a nonzero coordinate of d = (d1, . . . , dn), denote its number by l: dl /= 0. Without loss of generality we can as-

sume that dl ≥ m, cl ≥ −|D|max{|vi||v = (v1, .., vn) ∈ �1} ≥ −2rM. So, if we take k > 2rM/m (therefore,

R > (2r + 1)2rM/m + 2r), then the vector
∑R

j=1b(j) is greater than 0 in its l-th coordinate.

We have that
∑j+r

i=j a(i) = 0, so there exists k such that a(k) = f = (f1, . . . , fn) and fl � 0. Arguing as above we get that

the l-th coordinate of the vector
∑R

j=1b(j) is less than 0. A contradiction.

Thus a(i) = 0 for i = 1, . . . , R.
So, we proved thatψ |S1R+1

= 0 . The proof is similar for the sets S2R+1, S
3
R+1, S

4
R+1. Now,ψ(0,−R − 1) = 0 , becauseψ is

equal to 0 in all other vertices of the ball Br(0, r − R − 1). Similarly for the other elements of the set S5R+1. Thus, we have

ϕ|SR+1(x) = ϕ|SR+1(y), therefore, ϕ is R-prolongable for R ≥ (2r + 1)2rM/m + 2r. Now, by Lemma 1, ϕ is periodic. �

Now we proceed to the case r = 1.

Example 1. Here we give an example of generalized centered function of radius 1 for every degenerate matrix A. Let v be

its left eigenvector corresponding to the eigenvalue λ = 0: vA = 0. In the further text we omit the word “left” but always

mean left eigenvectors.

The function θv : Z2 → Rn, given by the formula

θv(x1, x2) =
⎧⎨
⎩
0, if x1 /= x2,

v, if x1 = x2 is even,

−v, if x1 = x2 is odd

is a non-periodic generalized centered function with the matrix A of radius 1. Indeed, this function satisfies the definition,

because for all balls of radius 1 both left and right side of the equality from the definition are equal to 0.
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Denote by χvy a function which is obtained from θv by translation by a vector y: χvy (x) = θv(x + y). Denote by χ∗v
y

a function, which is obtained from χvy by rotation by π/2: χ∗v
y (x1, x2) = χvy (−x2, x1). Functions χ

v
y and χ∗v

y are called

rectangular alternating functions.

Proposition 2. Let ϕ be an (A, 1)-function. Then there exists R0, such that for each R ≥ R0 the condition ϕ|BR(x) = ϕ|BR(y)
implies either

ϕ|S1R+1(x)
= ϕ|S1R+1(y)

or

ϕ|S1R+1(x)
= (ϕ + χv(y1,y2−R−1))|S1R+1(y)

,

where v is an eigenvector of A corresponding to the eigenvalue 0 : vA = 0.

Proof. In the same way as for the proof of periodicity for r ≥ 2 consider a function ψ(t) = ϕ(x + t)− ϕ(y + t), it holds
ψ |BR(0) = 0 by definition of the functionψ .

Consider the values of ψ on the set S1R+1(0), a(i) is defined as above (see Fig. 2). Denote a(1) = u, consider a ball

B1(1, 1 − R). The value of ψ in its center is 0, the sum of values of ψ in this ball is equal to 0. So a(2) = −u. Considering

sums of values ofψ in the balls B1(j, j − R), we get a(j + 1) = −a(j) = (−1)ju.
Nowwe consider the values ofψ on the set S1R+2(0). Denote b(i) = ψ(i, i − 2 − R), i = 1, . . . , R + 1 (see Fig. 2). Denote

b(1) = w, consider a ball B1(1,−R). The value of ψ in its center is u, the sum of values of ψ in this ball is equal to uA:

b(1)+ b(2) = a(1)A. So b(2) = uA − w. Considering sums of values of ψ in the balls B1(j, j − 1 − R) in the same way as

for r > 1, we get b(j)+ b(j + 1) = a(j)A for 1� j � R, whence b(j + 1) = (−1)j+1(juA − w). Notice that all these values

b(j) are different for odd j in the case uA = 0. The alphabet�1 of values ofψ is finite, so if R ≥ R0 = 2|�1| + 1, then uA = 0.

If u = 0, then ψ |S1R+1(0)
= 0, i.e., ϕ|S1R+1(x)

= ϕ|S1R+1(y)
. If uA = 0 and u /= 0, then u is an eigenvector of A, corresponding

to the eigenvalue λ = 0. In this case, we have thatψ |S1R+1(0)
= χu(0,−R−1)|S1R+1(0)

, i.e., ϕ|S1R+1(x)
= (ϕ + χu(y1,y2−R−1))|S1R+1(y)

.

The proposition is proved. �

Notice that the values of χv(y1,y2−R−1) are included in�1.

It is easy to obtain similar assertions for the values of ϕ on the sets SiR+1(x) and SiR+1(y), i = 2, 3, 4.

Proposition 3. Letϕ be an (A, 1)-function on the infinite rectangular grid, R ≥ 1. Ifϕ|BR(x) = ϕ|BR(y) andϕ|SiR+1(x)
= ϕ|SiR+1(y)

for i = 1, 2, 3, 4, then ϕ|S5R+1(x)
= ϕ|S5R+1(y)

.

Proof. To prove that ϕ(x1 − R − 1, x2) = ϕ(y1 − R − 1, y2) it is sufficient to compare the values of the function ϕ in the

balls B1(x1 − R, x2) and B1(y1 − R, y2). Similarly for other vertices of the sets S5R+1(x) and S5R+1(y). �

Proposition 4. Let ϕ be an (A, 1)-function on the infinite rectangular grid. If det A /= 0, then ϕ is periodic. If det A = 0, then

either ϕ is periodic or it can be obtained from a periodic (A, 1)-function by adding rectangular alternating functions.

Proof. If det A /= 0, then vA = 0 implies v = 0. In this case, Propositions 2 and 3 imply that ϕ is R-prolongable. By Lemma

1 it is periodic.

Letϕ beanon-periodic function,det A = 0.Consider thesetofballs {BR(x,−x)|x ∈ Z},whereR > R0 + 1,R0=2|�1| + 1,

as defined in the proof of Proposition 2. Vertices of these balls lie in a region {(z1, z2) : |z1 + z2| � R} (see Fig. 4). This set

of balls is infinite, the alphabet is finite, so we have a finite number of subwords on BR, this number is less than or equal

to |�||BR| = |�|(2R2+2R+1), where � is the alphabet of values of ϕ, |BR| is the number of vertices in a ball of radius R. This

means that we have two balls BR(x,−x) and BR(y,−y), such that

ϕ|BR(x,−x) = ϕ|BR(y,−y)

and |x − y| � |�|(2R2+2R+1). To be definite, assume that x � y. In Fig. 4, boundaries of these balls are marked by bold line.

Consider the sets S1R+1(x,−x) and S1R+1(y,−y). In Fig. 4, they aremarked bywhite circles. By Proposition 2we have either

ϕ|S1R+1(x,−x) = ϕ|S1R+1(y,−y)

or

ϕ|S1R+1(x,−x) = (ϕ + χv(y,−y−R−1))|S1R+1(y,−y),

where v is such that vA = 0. In the first case, we define ϕ′ = ϕ. In the second case, we subtract the function χv(y,−y−R−1)

from the functionϕ:ϕ′ = ϕ − χv(y,−y−R−1). Notice that if the alphabet of the values ofϕ is�, then the alphabet of the values

of ϕ′ is�′. Therefore,
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Fig. 4. The illustration for the proof of Proposition 4: the region {(z1, z2) : |z1 + z2| � R} and two balls BR(x,−x) and BR(y,−y). White circles mark

S1R+1(x,−x) and S1R+1(y,−y), black circles mark S1R(x + 1,−x − 1) and S1R(y + 1,−y − 1), squares mark the sets S2R+1(x,−x) and S2R+1(y,−y).

ϕ′|S1R+1(x,−x) = ϕ′|S1R+1(y,−y).

We have that ϕ′|BR−1(x+1,−x−1) = ϕ′|BR−1(y+1,−y−1). Now consider the sets S1R(x + 1,−x − 1) and S1R(y + 1,−y − 1). In
Fig. 4, they are marked by black circles. By Proposition 2 we have either

ϕ′|S1R(x+1,−x−1) = ϕ′|S1R(y+1,−y−1)

or

ϕ′|S1R(x+1,−x−1) = (ϕ′ + χu(y+1,−y−1−R))|S1R(y+1,−y−1),

where u is such that uA = 0. In the first case, we define ϕ′′ = ϕ′. In the second case, we subtract the functionχu(y+1,−y−1−R)

from the function ϕ′: ϕ′′ = ϕ′ − χu(y+1,−y−1−R). Therefore, ϕ
′′|S1R(x+1,−x−1) = ϕ′′|S1R(y+1,−y−1). Notice that the alphabet of

the values of ϕ′′ is also�′.
By Proposition 3 we obtain that

ϕ′′|BR(x+1,−x−1) = ϕ′′|BR(y+1,−y−1).

Arguing as above we proceed unit by unit adding rectangular alternating functions if necessary and then obtain a

function ϕ̃, which satisfies ϕ̃(z) = ϕ̃(z + y − x) for z such that |z1 + z2| � R. Note that we should also use an assertion

that is analogous to Proposition 2 for the set S3R+1. The alphabet of the values of the function ϕ̃ is �′ and this function is

(y − x)-periodic in the stripe |z1 + z2| � R.

If (y − x) is even, then denote t = y − x, if (y − x) is odd, then denote t = 2(y − x), t = (t,−t) (we double period,

because it will be convenient for us to deal with even period).

Now we are going to prove, that ϕ̃ is t-periodic. Remind that we have t-periodicity in the region {z : |z2 + z1| � R}.
First wewill prove that ϕ̃ is t-periodic in the next diagonal {(s − R,−s + 1)|s ∈ Z}. Suppose, by contradiction, that there

exists q such that

ϕ̃(q − R,−q + 1) /= ϕ̃(q − R + t,−q + 1 − t).

Denotew = ϕ̃(q − R,−q + 1)− ϕ̃(q − R + t,−q + 1 − t).
The function ϕ̃ is t-periodic in the region |z1 + z2| � R, so we have that

ϕ̃|BR(q,−q) = ϕ̃|BR(q+t,−q−t).
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So by assertion that is analogous to Proposition 2 for the set S2R+1 we have that

ϕ̃|S2R+1(q,−q) = (ϕ̃ + χw(q−R,−q+1))|S2R+1(q+t,−q−t),

wherew is such thatwA = 0. The sets S2R+1(q,−q) and S2R+1(q + t,−q − t) (for q = x, (y − x) even) aremarked by squares

in Fig. 4. In particular, this means that

w = ϕ̃((q + 2)− R,−(q + 2)+ 1)− ϕ̃((q + 2)− R + t,−(q + 2)+ 1 − t).

Now by induction we get that

w = ϕ̃((q + k)− R,−(q + k)+ 1)− ϕ̃((q + k)− R + t,−(q + k)+ 1 − t)

for every even integer k. Using this equality for k= t, 2t, . . . ,mt we obtain ϕ̃(q − R,−q + 1)= ϕ̃(q + t − R,−q − t + 1)+
w= ϕ̃(q + 2t − R,−q − 2t + 1)+ 2w = ϕ̃(q + mt − R,−q − mt + 1)+ mw.

This implies that ϕ̃ has infinite number of values. A contradiction.

Thus we obtain t-periodicity in extended region (in a stripe with additional diagonal). Continuing this line of reasoning,

we obtain t-periodicity for all Z2.

Therefore we obtained a (t,−t)-periodic function ϕ̃ by adding rectangular alternating functions χ and we did not use

functionsχ *. (t, t)-periodicity can be organized for the function ϕ̃ in the sameway by adding functions χ *. Note that adding

functionsχ * does not break (t,−t)-periodicity. The resulting function has a finite number of values, the alphabet of its values

is�′′. The proposition is proved. �

The main results of this section are summarized in the following theorem.

Theorem 1. The necessary and sufficient condition for existence of non-periodic (A, r)-functions on the infinite rectangular grid

is r = 1, det A = 0. In this case, a periodic function can be obtained from a non-periodic one by adding rectangular alternating

functions.

The theorem follows from Propositions 1 and 4.

Perfect coloring and centered function are partial cases of generalized centered functions, so Theorem 1 implies the

following results:

Corollary 1 [15]. Every perfect coloring of radius r ≥ 2 of the infinite rectangular grid is periodic.

Corollary 2 [16]. Every centered functionwith a finite number of values of radius r ≥ 1 on the infinite rectangular grid is periodic.

3. The infinite triangular grid

In this and the next sections, we consider the periodicity of generalized centered functions on the infinite triangular and

hexagonal grids (see Figs. 5 and 6). These graphs are dual. All the pictures in what follows illustrate functions on faces of dual

graphs instead of functions on vertices of graphs. A translation of the infinite grid is a translation of the plane superposing

the grid and its image under the action of translation. A function on vertices of an infinite grid is called periodic, if there exist

two noncollinear translations of this grid leaving the function invariant.

Theorem 2. The necessary and sufficient condition for existence of non-periodic (A, r)-functions on the infinite triangular grid is

r = 1, det(A + 2I) = 0.

Proof. Proof of periodicity is very similar to the proof of periodicity in Theorem 1. Here is an example of a non-periodic

(A, 1)-function for an arbitrary matrix A such that det(A + 2I) = 0.

Example2.LetAbean integermatrix, such thatλ = −2 is aneigenvalueofA, letv beacorrespondingeigenvector:vA = −2v.

The example of non-periodic (A, 1)-function on the infinite triangular grid (on faces of hexagonal grid) is in Fig. 7.

Indeed, for the balls centered in the vertices of the support of this function both sides of the equality in the definition of

generalized centered function are equal to 2v or −2v. For all other balls both sides are equal to 0. �

Perfect coloring and centered function are partial cases of generalized centered functions, so Theorem 2 implies the

following results:

Corollary 3. Every perfect coloring of radius r ≥ 2 of the infinite triangular grid is periodic.

Corollary 4 [16]. Every centered function with a finite number of values of radius r ≥ 1 on the infinite triangular grid is periodic.
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Fig. 5. The infinite triangular grid.

Fig. 6. The infinite hexagonal grid.

Fig. 7. An example of non-periodic generalized centered function on faces of the infinite hexagonal grid, here vA = −2v.

4. The infinite hexagonal grid

In this section, we consider the periodicity of generalized centered functions on the infinite hexagonal grid (see Fig. 6).

The idea of the proof is the same as for the infinite rectangular and triangular grids, but in the case of hexagonal grid there

appear some technical differences. Notice that the graph of the hexagonal grid is bipartite. Balls with centers at vertices from

different partition classes cannot be obtained one from another by translations. Sowe consider a function on this graph to be

R-prolongable if it is R-prolongable for each partition class separately. For the infinite hexagonal grid R-prolongability also

implies periodicity.

Theorem 3. Non-periodic (A, r)-functions on the infinite hexagonal grid exist only in the following two cases:
(1) r = 1, det(A2 − I) = 0,

(2) r = 2, det(A2 + 4A + 3I) = 0.

Proof. At first we give the examples of non-periodic (A, r)-functions for these two cases.

Example 3. Let A be an integer matrix, such that det(A2 − I) = 0. Then λ = 1 is an eigenvalue of A2, let v be corresponding

eigenvector: vA2 = v. Denote vA = u. The example of non-periodic (A, 1)-function on the infinite hexagonal grid (on faces

on triangular grid) is in Fig. 8.

Example 4. Let A be an integer matrix, such that det(A2 + 4A + 3I) = 0. Then λ = 1 is an eigenvalue of (A + 2I)2, let v
be corresponding eigenvector: v(A + 2I)2 = v. Denote v(A + 2I) = u. The example of non-periodic (A, 2)-function on the

infinite hexagonal grid is in Fig. 8.
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The fact that these functions are generalized centered functions can be checked straightforwardly in the same way as for

the rectangular and triangular grids.

A ball in the infinite hexagonal grid has a little bitmore complicated structure than in the rectangular and triangular grids.

First, there are three types of boundary vertices in a ball in the infinite hexagonal grid. Wewill consider each type of vertices

separately. Secondly, spheres of even and odd radii should be considered separately, because they differ by the structure of

boundary. A sphere of even radius r looks like a hexagon with sides of length r
2

+ 1. A sphere of odd radius r has sides of

alternating lengths r+1
2

(side with vertices of type 2 and two additional vertices of type 3) and r+1
2

+ 1 (side with vertices

of type 1 and two additional vertices of type 3). These lengths can be written in common way:
⌊
r
2

⌋
+ 1 (side with vertices

of type 2) and
⌊
r+1
2

⌋
+ 1 (side with vertices of type 1). Figs. 9 and 10 illustrate balls of radii 5 and 6, respectively. Thirdly, in

the proof of the theorem we have to consider up to four layers instead of two layers to obtain a contradiction.

The idea of the proof is the following. Arguing as for the infinite rectangular grid, it is sufficient to prove that there exist

R ∈ Z such that for every vertex x the condition ψ |BR(x) = 0 implies ψ |SR+1(x) = 0, where ψ is a function in the alphabet

�1. We obtain some conditions on the values of the function on the vertices of the layer i (i.e., vertices of the sphere SR+i(x))
by considering balls of radius r with centers at vertices of the sphere SR−r+i(x). Figs. 11 and 12 illustrate part of the ball of

radius R with zero values (its boundary is marked with bold line) and four layers. Values of the layers 1–4 are denoted by

a(i), b(i), c(i), d(i), respectively. Using these conditions for the layers 1-4, we get that if a(i) /= 0, then we obtain different

values on one of these layers, that contradicts the condition that the alphabet of values ofψ is finite.

Now let us consider details of each case for r ≥ 4. The cases r = 1, 2, 3 will be considered separately in the further text,

because in these cases when we apply the definition of generalized function to obtain conditions for layers 2–4, centers of

corresponding balls of radius r are outside the ball BR(x) and thus the argument is different from the case r ≥ 4.

Case 1: (r is even, vertices of the sphere of radius R + 1 are of type 1). See Fig. 11.

In this case, we should consider four layers. Denote n = r
2

+ 1.

Values of the first layer (a(1), a(2), . . . , a(p), p =
⌊
R
2

⌋
). In the further text formulas hold for all indices for which the

a-values (or b-, c-, d-values) are defined. Applying the definition of a generalized centered function for the function ψ to

vertices with centers in the spheres SR−r+1(x), we get
∑j+n−1

i=j a(i) = 0. Therefore a(i + n) = a(i), i.e., the sequence a(i) is

periodic with period n.

Values of the second layer (b(1), b(2), . . . , b(p)). Applying thedefinitionof a generalized centered function for the function

ψ to vertices with centers in the spheres SR−r+2(x), we get
∑j+n−1

i=j b(i) = 0. Therefore b(i + n) = b(i), i.e., the sequence

b(i) is periodic with period n.

Values of the third layer (c(1), c(2), . . . , c(p − 1)). Applying the definition of a generalized centered function for the

function ψ to vertices with centers in the spheres SR−r+3(x), we get
∑j+n−1

i=j c(i)− b(j)+ a(j) = 0. So
∑j+n−1

i=j c(i) =
−a(j)+ b(j) and

∑j+n
i=j+1 c(i) = −a(j + 1)+ b(j + 1), therefore, c(j + n)− c(j) = −b(j)+ b(j + 1)+ a(j)− a(j + 1).

Therefore, we have c(j + kn)− c(j) = k(−b(j)+ b(j + 1))+ k(a(j)− a(j + 1)).
Values of the fourth layer (d(1), d(2), . . . , d(p − 1)). Applying the definition of a generalized centered function for the

function ψ to vertices with centers in the spheres SR−r+3(x), we get
∑j+n−1

i=j d(i)+ b(j)+ b(j + n) = 0. It follows that
∑j+n−1

i=j d(i) = −2b(j) and
∑j+n

i=j+1 d(i) = −2b(j + 1), therefore, d(j + n)− d(j) = −2b(j + 1)+ 2b(j) . It follows that

d(j + kn)− d(j) = 2k(−b(j + 1)+ b(j)). If b(j + 1) /= b(j), then all the values d(j + kn) are different. The fact that the

alphabet�1 of values ofψ is finite implies that b(i) = b(i + 1) for i = 1, . . . , p.
Using formulas for the values c(i)we conclude that a(i) = a(i + 1), so a(i) = 0 for i = 1, . . . , p.

Case2: r is even, vertices of the sphere of radiusR + 1are of type2. This case is similar to the case of the infinite rectangular

grid.

Fig. 8. An example of non-periodic generalized centered function on faces of the infinite triangular grid.
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Fig. 9. A ball of radius 5 in the infinite hexagonal grid and three types of boundary vertices.

Fig. 10. The illustration for the proof of Proposition 1 for R = 5, r = 2.

Case 3: r is odd, vertices of the sphere of radius R + 1 are of type 1 (see Fig. 11). In this case, we should consider three

layers. Denote n = r+1
2

. Here p =
⌊
R
2

⌋
.

Values of the first layer. Arguing as above, we get that
∑j+n

i=j a(i) = 0. Therefore the sequence a(i) is periodic with period

n + 1.

Values of the second layer. It holds
∑j+n

i=j+1 b(i)+ ∑j+n
i=j+1 a(i) = 0.

Values of the third layer. Using formulas for the second level, we get
∑j+n

i=j c(i)+ a(j)+ a(j + n + 1) = 0, it follows that
∑j+n

i=j c(i) = −2a(j) and
∑j+n+1

i=j+1 c(i) = −2a(j + 1), therefore, c(j + n + 1)− c(j) = −2a(j + 1)+ 2a(j). It follows that

c(j + k(n + 1))− c(j) = 2k(−a(j + 1)+ a(j)). Thus a(i) = 0 for i = 1, . . . , p.

Case 4: r is odd, vertices of the sphere of radius R + 1 are of type 2 (see Fig. 12). In this case, we should consider four

layers. Here p =
⌊
R+1
2

⌋
− 1. Denote n = r+1

2
.

Values of the first layer. Arguing as above, we get that
∑j+n−1

i=j a(i) = 0. Therefore the sequence a(i) is periodic with

period n.

Values of the second layer. For these values we have
∑j+n

i=j b(i) = 0. Therefore the sequence b(i) is periodic with period

n + 1.

Values of the third layer. It holds
∑j+n−1

i=j c(i)+ ∑j+n
i=j+1 b(i)+ ∑j+n

i=j a(i) = 0.

Values of the fourth layer. Applying the definition of (A, r)-function for corresponding values, we get∑j+n
i=j d(i)+ ∑j+n−1

i=j c(i)+ ∑j+n+1
i=j b(i)+ ∑j+n

i=j a(i) = 0. Using formulas obtained for the third layer, we get that
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Fig. 11. Part of a ball of radius R with zero values and four layers, where the vertices of the sphere of radius R + 1 are of type 1.

Fig. 12. Part of a ball of radius R with zero values and four layers, where the vertices of the sphere of radius R + 1 are of type 2.

∑j+n
i=j d(i) = −2b(j), therefore, d(j + k(n + 1))− d(j) = 2k(−b(j + 1)+ b(j)). As before, we obtain b(i) = 0 for

i = 1, . . . , p + 1.

Combining formulas obtained for the c-values with the fact that b(i) = 0, we get
∑j+n−1

i=j c(i)+ ∑j+n
i=j a(i) = 0, whence

c(j + kn)− c(j) = 2k(−a(j + 1)+ a(j)). Again we obtain that a(i) = 0 for i = 1, . . . , p.

Now we will consider the case r = 3 in similar way.

Case 1 (r = 3): vertices of the sphere of radius R + 1 are of type 1 (see Fig. 11). In this case, the proof follows from the proof

for the case r ≥ 4 (case 3), because in this casewe considered only three layers and centers of ballswere inside the ball BR(x).

Case 2 (r = 3): vertices of the sphere of radius R + 1 are of type 2 (see Fig. 12). In this case, we have to consider four

layers, so when we consider the vertices of the layer 4, centres of balls of radius r are on the first layer. Here p =
⌊
R+1
2

⌋
− 1.

Values of the first layer. Arguing as above, we get that a(j)+ a(j + 1) = 0. Therefore the sequence a(i) is periodic with

period 2.

Values of the second layer.We have b(j)+ b(j + 1)+ b(j + 2) = 0, therefore the sequence b(i) is periodicwith period 3.

Values of the third layer. For these values we have c(j)+ c(j + 1)+ b(j + 1)+ b(j + 2)+ a(j)+ a(j + 1)+ a(j + 2)
= 0. Using formulas obtained for the layers 1–2, we have c(j)+ c(j + 1)− b(j)+ a(j) = 0.

Values of the fourth layer. Applying the definition of a generalized centered function to vertices of the first layer, we

get d(j)+ d(j + 1)+ d(j + 2)+ c(j)+ c(j + 1)+ b(j)+ b(j + 1)+ b(j + 2)+ b(j + 3)+ a(j)+ a(j + 2) = a(j + 1)A.
Taking into account formulas obtained for the layers 1–3, we get d(j)+ d(j + 1)+ d(j + 2) = −2b(j)− a(j)(A + I).

This equality holds for all j for which the a-, b-, c- and d-values are defined, so substitute j by j + 1 in this formula:

d(j + 1)+ d(j + 2)+ d(j + 3) = −2b(j + 1)− a(j + 1)(A + I) = −2b(j + 1)+ a(j)(A + I).
Subtract previous equation from this one: d(j + 3)− d(j) = 2a(j)(A + I)− 2b(j + 1)+ 2b(j).
This equality holds for all j for which the a-, b-, c- and d-values are defined, so substitute j by j + 3 in this formula:

d(j + 6)− d(j + 3) = 2a(j + 3)(A + I)− 2b(j + 4)+ 2b(j + 3) = −2a(j)(A + I)− 2b(j + 1)+ 2b(j).
Addition of these two equations yields to d(j + 6)− d(j) = −4(b(j + 1)− b(j)).
Arguing as above, we get d(j + 6k)− d(j) = −4k(b(j + 1)− b(j)). As before, it follows b(i) = 0 for i = 1, . . . , p + 1.

Combining this with the formulas for the c-values, we get that b(i) = 0, we obtain c(j)+ c(j + 1) = −a(j).
This equality holds for all j, so c(j + 1)+ c(j + 2) = −a(j + 1) = a(j), whence c(j + 2)− c(j) = 2a(j) and

c(j + kn)− c(j) = −2k(−a(j + 1)+ a(j)). Arguing as above we get that a(i) = 0 for i = 1, . . . , p.



S.A. Puzynina / Information and Computation 207 (2009) 1315–1328 1327

So we proved that ψ = 0 on vertices of types 1 and 2 of the sphere SR+1(x) for r = 3. The values of ψ on the vertices

of type 3 are equal to 0, that can be proved in the same way as for the rectangular grid. Thus, we have ψ |SR+1(x) = 0. This

means that the function ϕ is R-prolongable. So it is periodic. This completes the proof of periodicity for r = 3.

Now we will consider the cases r = 1 and r = 2.

Let ϕ be a (A, 2)-function, A such that det(A + 4A + 3I) /= 0. We will prove that ϕ is R-prolongable and thus periodic.

Consider functionψ defined as above.

Case 1 (r = 2): vertices of the sphere of radius R + 1 are of type 1 (see Fig. 11). In this case, we should consider four layers.

Values of the first layer. Applying the definition of (A, 2)-function to the vertices in the sphere SR−1(x), we get

a(j)+ a(j + 1) = 0. Therefore the sequence a(i) is periodic with period 2.

Values of the second layer. Arguing as above we obtain b(j)+ b(j + 1) = 0. Therefore the sequence b(i) is also periodic

with period 2.

Values of the third layer. For these valueswe have the following equality: a(j − 1)+ a(j + 1)+ b(j)+ c(j − 1)+ c(j) =
a(j)A. Using formulas for the first layer, we obtain c(j − 1)+ c(j) = a(j)(A + 2I)− b(j). Thus

c(j)+ c(j + 1) = a(j + 1)(A + 2I)− b(j + 1) = −a(j)(A + 2I)+ b(j), c(j + 1)− c(j − 1) = 2(−a(j)(A + 2I)+ b(j)).
Whence c(j − 1 + 2k)− c(j − 1) = 2k(−a(j)(A + 2I)+ b(j)). The function ψ has a finite number of values, so

a(j)(A + 2I)− b(j) = 0, b(j) = a(j)(A + 2I). Therefore, c(j − 1)+ c(j) = 0.

Values of the fourth layer. Applying the definition of a generalized centered function of radius 2 to the vertices in the

second layer, we get a(j)+ b(j − 1)+ b(j + 1)+ c(j − 1)+ c(j)+ d(j − 1)+ d(j) = b(j)A.
Using formulas obtained above, we get d(j − 1)+ d(j) = b(j)(A + 2I)− a(j). Applying this formula for j + 1 instead

of j and using formulas for a- and b-values, we get d(j)+ d(j + 1) = b(j + 1)(A + 2I)− a(j + 1) = −b(j)(A + 2I)+ a(j).
Arguing as above, d(j − 1 + 2k)− d(j − 1) = −2k(b(j)(A + 2I)− a(j)).

As before, it follows b(j)(A + 2I)− a(j) = 0, a(j) = b(j)(A + 2I). Combining it with results for layer 3 we get

a(j) = a(j)(A + 2I)2. It holds det((A + 2I)2 − I) /= 0 by our assumption, so a(i) = 0 for i = 1, . . . , p.

Case 2 (r = 2): vertices of the sphere of radius R + 1 are of type 2 (see Fig. 12). In this case, the fact that a(i) = 0 follows

from the proof for the case 2 for r ≥ 4, because for this case only a- and b-values were used.

Therefore, the (A, 2)-function ϕ is periodic, if det(A2 + 4A + 3I) /= 0.

Let ϕ be a (A, 1)-function, A such that det(A2 − I) /= 0. Wewill prove that ϕ is R-prolongable and thus periodic. Consider

the functionψ defined as above.

Case 1 (r = 1): vertices of the sphere of radius R + 1 are of type 1 (see Fig. 11). In this case, we should consider three

layers. Here p =
⌊
R
2

⌋
.

Values of the first layer. Arguing as above, we get that a(j)+ a(j + 1) = 0. Therefore the sequence a(i) is periodic with

period 2.

Values of the second layer. Considering balls with centers in the first layer, we obtain b(j) = a(j)A.
Values of the third layer. Considering balls with centers in the first layer, we obtain c(j − 1)+ c(j)+ a(j) = b(j)A.
Using formulas for the first and the second layers, we get c(j − 1)+ c(j)+ a(j) = a(j)A2, c(j − 1)+ c(j) = a(j)(A2 − I),

c(j)+ c(j + 1) = a(j + 1)(A2 − I) = −a(j)(A2 − I), c(j + 1)− c(j − 1) = −2a(j)(A2 − I).
Therefore c(j − 1 + 2k)− c(j − 1) = −2ka(j)(A2 − I). So a(j)(A2 − I) = 0. We have det(A2 − I) /= 0 by our assump-

tion, so a(i) = 0 for i = 1, . . . , p.

Case 2 (r = 1): vertices of the sphere of radius R + 1 are of type 2 (see Fig. 12). Applying the definition of a generalized

centered function of radius 1 to the vertices in the sphere SR(x), we immediately get a(j) = 0.

We proved, that (A, 1)-function is periodic, if det(A2 − I) /= 0.

This completes the proof of the theorem. �

Perfect coloring and centered function are partial cases of generalized centered functions, so Theorem 3 implies the

following results:

Corollary 5. Every perfect coloring of radius r ≥ 3 of the infinite hexagonal grid is periodic.

Corollary 6. [16]. Every centered functionwith a finite number of values of radius r ≥ 3 on the infinite hexagonal grid is periodic.

Remark. It is easy to see that all theorems in this paper hold also for generalized centered functions with values in Cn.
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5. Conclusion

The results of this paper canbe summarized in the following table. In each cellwewritenecessary and sufficient conditions

for existence of non-periodic functions in the corresponding case.
Rectangular grid Triangular grid Hexagonal grid

r = 1, det A = 0 r = 1, det(A + 2I) = 0 r = 1, det(A2 − I) = 0

or r = 2, det(A2 + 4A + 3I) = 0

We suppose that the technique used for graphs of these grids can be also used for other transitive graphs, because the

notion of R-prolongability and Lemma 1 can be generalized for this case.

For example, consider a group H =< a1, . . ., an > of translations of Z2, generated by the vectors a1, . . ., an, ai ∈ Z2.

Consider a Cayley graph of this group. Denote it by G(a1, . . ., an). It would be interesting to study the following problem:

for what values of A, a1, . . ., an a generalized centered function with matrix A on the graph G(a1, . . ., an) is periodic? Notice

that the triangular grid can be interpreted as a Cayley graph G((1, 0), (0, 1), (1, 1)). It would be interesting to consider the

periodicity ofm-dimensional words of this type.
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