87,968 research outputs found

    Approximation Bounds For Minimum Degree Matching

    Full text link
    We consider the MINGREEDY strategy for Maximum Cardinality Matching. MINGREEDY repeatedly selects an edge incident with a node of minimum degree. For graphs of degree at most Δ\Delta we show that MINGREEDY achieves approximation ratio at least Δ−12Δ−3 \frac{\Delta-1}{2\Delta-3} in the worst case and that this performance is optimal among adaptive priority algorithms in the vertex model, which include many prominent greedy matching heuristics. Even when considering expected approximation ratios of randomized greedy strategies, no better worst case bounds are known for graphs of small degrees.Comment: % CHANGELOG % rev 1 2014-12-02 % - Show that the class APV contains many prominent greedy matching algorithms. % - Adapt inapproximability bound for APV-algorithms to a priori knowledge on |V|. % rev 2 2015-10-31 % - improve performance guarantee of MINGREEDY to be tigh

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin

    Greedy algorithms for high-dimensional eigenvalue problems

    Full text link
    In this article, we present two new greedy algorithms for the computation of the lowest eigenvalue (and an associated eigenvector) of a high-dimensional eigenvalue problem, and prove some convergence results for these algorithms and their orthogonalized versions. The performance of our algorithms is illustrated on numerical test cases (including the computation of the buckling modes of a microstructured plate), and compared with that of another greedy algorithm for eigenvalue problems introduced by Ammar and Chinesta.Comment: 33 pages, 5 figure

    Analysis of Performance of Dynamic Multicast Routing Algorithms

    Full text link
    In this paper, three new dynamic multicast routing algorithms based on the greedy tree technique are proposed; Source Optimised Tree, Topology Based Tree and Minimum Diameter Tree. A simulation analysis is presented showing various performance aspects of the algorithms, in which a comparison is made with the greedy and core based tree techniques. The effects of the tree source location on dynamic membership change are also examined. The simulations demonstrate that the Source Optimised Tree algorithm achieves a significant improvement in terms of delay and link usage when compared to the Core Based Tree, and greedy algorithm

    Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection

    Full text link
    We study the problem of selecting a subset of k random variables from a large set, in order to obtain the best linear prediction of another variable of interest. This problem can be viewed in the context of both feature selection and sparse approximation. We analyze the performance of widely used greedy heuristics, using insights from the maximization of submodular functions and spectral analysis. We introduce the submodularity ratio as a key quantity to help understand why greedy algorithms perform well even when the variables are highly correlated. Using our techniques, we obtain the strongest known approximation guarantees for this problem, both in terms of the submodularity ratio and the smallest k-sparse eigenvalue of the covariance matrix. We further demonstrate the wide applicability of our techniques by analyzing greedy algorithms for the dictionary selection problem, and significantly improve the previously known guarantees. Our theoretical analysis is complemented by experiments on real-world and synthetic data sets; the experiments show that the submodularity ratio is a stronger predictor of the performance of greedy algorithms than other spectral parameters
    • …
    corecore