3,890 research outputs found

    Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property

    Get PDF
    Based on the concept of losslessness in digital filter structures, this paper derives a general class of maximally decimated M-channel quadrature mirror filter banks that lead to perfect reconstruction. The perfect-reconstruction property guarantees that the reconstructed signalhat{x} (n)is a delayed version of the input signal x (n), i.e.,hat{x} (n) = x (n - n_{0}). It is shown that such a property can be satisfied if the alias component matrix (AC matrix for short) is unitary on the unit circle of the z plane. The number of channels M is arbitrary, and when M is two, the results reduce to certain recently reported 2-channel perfect-reconstruction QMF structures. A procedure, based on recently reported FIR cascaded-lattice structures, is presented for optimal design of such FIR M-channel filter banks. Design examples are included

    Generic Feasibility of Perfect Reconstruction with Short FIR Filters in Multi-channel Systems

    Full text link
    We study the feasibility of short finite impulse response (FIR) synthesis for perfect reconstruction (PR) in generic FIR filter banks. Among all PR synthesis banks, we focus on the one with the minimum filter length. For filter banks with oversampling factors of at least two, we provide prescriptions for the shortest filter length of the synthesis bank that would guarantee PR almost surely. The prescribed length is as short or shorter than the analysis filters and has an approximate inverse relationship with the oversampling factor. Our results are in form of necessary and sufficient statements that hold generically, hence only fail for elaborately-designed nongeneric examples. We provide extensive numerical verification of the theoretical results and demonstrate that the gap between the derived filter length prescriptions and the true minimum is small. The results have potential applications in synthesis FB design problems, where the analysis bank is given, and for analysis of fundamental limitations in blind signals reconstruction from data collected by unknown subsampled multi-channel systems.Comment: Manuscript submitted to IEEE Transactions on Signal Processin

    Role of anticausal inverses in multirate filter-banks. I. System-theoretic fundamentals

    Get PDF
    In a maximally decimated filter bank with identical decimation ratios for all channels, the perfect reconstructibility property and the nature of reconstruction filters (causality, stability, FIR property, and so on) depend on the properties of the polyphase matrix. Various properties and capabilities of the filter bank depend on the properties of the polyphase matrix as well as the nature of its inverse. In this paper we undertake a study of the types of inverses and characterize them according to their system theoretic properties (i.e., properties of state-space descriptions, McMillan degree, degree of determinant, and so forth). We find in particular that causal polyphase matrices with anticausal inverses have an important role in filter bank theory. We study their properties both for the FIR and IIR cases. Techniques for implementing anticausal IIR inverses based on state space descriptions are outlined. It is found that causal FIR matrices with anticausal FIR inverses (cafacafi) have a key role in the characterization of FIR filter banks. In a companion paper, these results are applied for the factorization of biorthogonal FIR filter banks, and a generalization of the lapped orthogonal transform called the biorthogonal lapped transform (BOLT) developed

    Oversampled Filter Banks

    Get PDF
    Perfect reconstruction oversampled filter banks are equivalent to a particular class of frames in ` (Z). These frames are the subject of this paper. First, necessary and sufficient conditions on a filter bank for implementing a frame or a tight frame expansion are established, as well as a necessary and sufficient condition for perfect reconstruction using FIR filters after an FIR analysis. Complete parameterizations of oversampled filter banks satisfying these conditions are given. Further, we study the condition under which the frame dual to the frame associated with an FIR filter bank is also FIR and give a parameterization of a class of filter banks satisfying this property. Then, we focus on nonsubsampled filter banks. Nonsubsampled filter banks implement transforms similar to continuous-time transforms and allow for very flexible design. We investigate relations of these filter banks to continuous-time filtering and illustrate the design flexibility by giving a procedure for designing maximally flat two-channel filter banks that yield highly regular wavelets with a given number of vanishing moments

    Oversampled Filter Banks

    Get PDF
    Perfect reconstruction oversampled filter banks are equivalent to a particular class of frames in t(2)(Z), These frames are the subject of this paper. First, necessary and sufficient conditions on a filter bank for implementing a frame or a tight frame expansion are established, as well as a. necessary and sufficient condition for perfect reconstruction using FIR filters after an FIR analysis. Complete parameterizations of oversampled filter banks satisfying these conditions are given, Further, we study the condition under which the frame dual to the frame associated with an FIR filter bank is also FIE and give a parameterization of a class of filter banks satisfying this property, Then, we focus on nonsubsampled filter banks. Nonsubsampled filter banks implement transforms similar to continuous-time transforms and allow for very flexible design. We investigate relations of these filter banks to continuous-time filtering and illustrate the design flexibility by giving a procedure for designing maximally flat two-channel filter banks that yield highly regular wavelets with a given number of vanishing moments

    Efficient method for designing two-channel PR FIR filter banks with low system delay

    Get PDF
    In this paper, an efficient method for designing perfect reconstruction (PR) two-channel finite impulse response (FIR) filter banks with low system delay is proposed. It is based on the use of nonlinear-phase FIR function in a structure previously proposed by Phoong et al. The design problem is formulated as a complex polynomial approximation problem and is solved effectively using the Remez exchange algorithm with very low design complexity. Design examples show that filter banks with flexible stopband attenuation and system delay can be readily obtained by the proposed algorithm.published_or_final_versio

    Theory of two-dimensional multirate filter banks

    Get PDF
    Results are presented on 2-D FIR (two-dimensional finite-impulse-response) filter banks for multirate applications. The theory is valid for all sampling lattices; conditions for alias-free and perfect signal reconstruction are derived. Synthesis structures for paraunitary and nonparaunitary polynomial matrices are derived, which yield perfect reconstruction filter banks. The degrees of freedom are given for these systems. Linear phase conditions are posed on the polyphase form of filter banks. which is used to derive a design structure for the restricted, but important, case of linear phase filter bank

    Design and multiplierless implementation of two-channel biorthogonal IIR filter banks with low system delay

    Get PDF
    An efficient method for the design of low-delay two-channel, perfect reconstruction IIR filter banks is proposed. The design problem is formulated in terms of minimax designs of a general stable IIR filter that can be obtained using semidefinite programming and an FIR filter that can be obtained using the Remez exchange algorithm. A multiplierless implementation on this filter bank is also proposed and investigated.published_or_final_versio
    corecore