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Oversampled Filter Banks
Zoran Cvetkovíc, Member, IEEE, and Martin Vetterli,Fellow, IEEE

Abstract—Perfect reconstruction oversampled filter banks are
equivalent to a particular class of frames in`2(Z). These frames
are the subject of this paper. First, necessary and sufficient
conditions on a filter bank for implementing a frame or a
tight frame expansion are established, as well as a necessary
and sufficient condition for perfect reconstruction using FIR
filters after an FIR analysis. Complete parameterizations of
oversampled filter banks satisfying these conditions are given.
Further, we study the condition under which the frame dual to
the frame associated with an FIR filter bank is also FIR and give a
parameterization of a class of filter banks satisfying this property.
Then, we focus on nonsubsampled filter banks. Nonsubsampled
filter banks implement transforms similar to continuous-time
transforms and allow for very flexible design. We investigate
relations of these filter banks to continuous-time filtering and
illustrate the design flexibility by giving a procedure for designing
maximally flat two-channel filter banks that yield highly regular
wavelets with a given number of vanishing moments.

I. INTRODUCTION

T HE IDEA OF localized time–frequency representations
was introduced in the 1940’s by Gabor [1], who pro-

posed decompositions of signals in in terms of mod-
ulated Gaussians, given that they attain the lower bound
on the uncertainty in the joint time–frequency domain and
thus facilitate signal analysis with good resolution in both
time and frequency. Expansions based on different kinds of
time–frequency localized waveforms have been subsequently
used in physics, geophysics, and signal processing. How-
ever, only in the 1980’s have they received a thorough and
rigorous treatment. One of the important results was the
discovery of the relationship between wavelet expansions
in and their discrete-time analog, which had been
developing independently in the framework of filter banks
and subband coding. Namely, wavelet bases in can
be generated from iterated filter banks [2], and these filter
banks can be used for the efficient computation of correspond-
ing continuous-time wavelet expansion coefficients [3]. The
theory of time–frequency localized representations in
has been developed beyond linearly independent expansions,
focusing on redundant expansions based on Weyl–Heisenberg
and wavelet frames [4]. However, the theory of filter banks
has been primarily confined to the critically sampled case,
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i.e., orthonormal and biorthonormal bases in [5], [6]. In
this paper, we study the class of frames in , which are
equivalent to perfect reconstruction oversampled filter banks.

One of the main reasons for studying overcomplete ex-
pansions is that the requirement for orthogonality or linear
independence of expansion vectors imposes considerable con-
straints that can be in conflict with other design specifications.
Perhaps the most striking example is the fact that Gabor
analysis with good time–frequency resolution is not possible
with orthonormal bases [7], [8]. For a number of applications,
orthogonality is indeed not needed. For instance, it is hard
to believe that orthonormal representations occur anywhere in
nature and that they would be appropriate for modeling biolog-
ical systems or natural phenomena. Redundant representations
followed by a sophisticated selection of information can even
yield good compression schemes. This has been demonstrated
by Mallat and Zhong with their wavelet modulus maxima
signal compression algorithm [9]. The matching pursuit algo-
rithm, studied also by Mallatet al. [10], is another example. It
is based on the idea that there is a greater chance for finding
compact signal representations if the dictionary of vectors at
our disposal is richer. The full potential of these algorithms
has not been assessed yet; however, they already give results
comparable with standard compression schemes [11].

The issues on overcomplete expansions that we investigate
here are related to the completeness and the stability of
subband decompositions provided by oversampled filter banks.
In particular, we investigate

• the necessary and sufficient conditions on filter banks for
implementing frame or tight frame expansions;

• the feasibility of perfect reconstruction using FIR filters
after an FIR analysis;

• the design of oversampled filter banks;
• the relation to continuous-time signal analysis.

General results regarding oversampled filter banks, such as the
frame and the tight frame conditions, are given in Section III.
Section III also provides complete parameterizations of FIR
filter bank frames and tight frames. Parahermitan unimodular
matrices of polynomials give FIR filter bank frames whose
dual frames also consist of finite length vectors. A complete
parameterization of these matrices is also given in Section III.
The frame and tight frame conditions on the nonsubsampled
filter banks, as well as the conditions for FIR reconstruction,
have special forms, and these are studied in Section IV. In the
same section, we discuss a design of highly regular wavelets
with a given number of vanishing moments that are obtained
from the iterated octave band structure.

Notation: For a filter , will denote the filter
whose impulse response is the complex conjugate of the time-
reversed version of the impulse response of . Similarly,
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when used with matrices of rational functions of the complex
variable , will denote the matrix obtained from by
transposing it, conjugating all of the coefficients of the rational
functions in , and replacing by . If ,
we say that is parahermitian. A polynomial matrix

, whose determinant is a nonzero constant, is called a
unimodular matrix. A matrix is said to be paraunitary
if , where is the identity matrix, and
is a constant. Note that in this paper we will use the term
polynomial for Laurent polynomials, in general, that is, FIR
filters that contain possibly both positive
and negative powers of. The complex conjugate transpose
of a vector will be denoted as ; when used with scalars,
the superscript will denote complex conjugation.

II. FILTER BANKS AND FRAME EXPANSIONS

The theory of filter banks [5], [6] provides a convenient
framework for both the study and the implementation of an
important class of signal decompositions in . These
are expansions underlying signal analysis through a sliding
window using a selected set of elementary waveforms. In
general, they have the form

(1)

where the vectors denote the translated versions of
elementary waveforms

and . Any signal in can be represented in a
numerically stable way using such an expansion if and only
if the family

(2)

constitutes a frame in . Here, we briefly review results of
the frame theory that are relevant for this paper. This review
is based on the treatments given in [2] and [12].

A family of vectors given by (2) is said to be a frame
if for any

(3)

for some constants and , which are calledframe
bounds. If the family is a frame, there exists another frame

(4)

such that the coefficients of the expansion in (1) can be
calculated as inner products with its vectors, that is

(5)

(a) (b)

Fig. 1. K-channel filter bank with subsampling by factorN in the channels.
(a) Analysis filter bank. (b) Synthesis filter bank.

Frames and have interchangeable roles so that any signal
in can also be expanded as

(6)

For a given analysis frame , the corresponding synthesis
frame in (6) is not unique. One particular solution is the
frame dual to [12]. When a signal is synthesized from
expansion coefficients degraded by an additive noise, the
noise component that is orthogonal to the range of the frame
expansion, is projected to zero, provided that the synthesis is
performed using the dual frame. No other synthesis frame has
this maximal noise reduction property.

If the frame bounds are equal ( ), we say that the
frame is tight. It can be shown that under this condition, the
frame is equal to its dual. Hence, the expansion formula (1)
has a form similar to orthogonal expansions

(7)

However, unlike an orthogonal basis, vectors of a tight frame
are generally not linearly independent.

The inner products of a signal with the vectors of the
family can be obtained at the output of a-
channel filter bank with subsampling by factor in each
of the channels [see Fig. 1(a)]. The impulse responses of the
filters of such a filter bank are
the complex conjugates of the time-reversed versions of the
elementary waveforms

. If is a frame, the filter bank associated within this
way is said to implement a frame expansion, andis called
its associated frameor a filter bank frame. Note that can
be a frame only if , and we assume this condition
throughout this paper. Critically sampled filter banks are those
where , whereas the term oversampled filter banks
refers to the case . In filter bank terms, being a frame
means that any signal can be reconstructed in a numerically
stable1 manner from the subband components obtained at the
outputs of the associated filter bank. This reconstruction is
implemented using a synthesis filter bank such as the one

1Stable reconstruction means that a bounded perturbation of subband com-
ponents cannot result in an arbitrary large error and that a small perturbation
can cause only a small reconstruction error.
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shown in Fig. 1(b). If the impulse responses of the filters
of the synthesis filter bank are equal to

the waveforms , that is, , then this filter bank
implements the synthesis formula

(8)

where denotes the sequence at the input of theth
channel.

The scope of frames in that can be derived from
filter banks goes beyond families of vectors of the type
given in (2). An abundance of frames can be generated by
iteratively growing filter bank trees in the manner used for
generating wavelet packets [16]. The significance of iterated
filter structures is that they can produce waveforms with almost
any reasonable localization in the time–frequency plane, which
allows for signal analysis with a great flexibility of time and
frequency resolutions.

III. GENERAL RESULTS ON OVERSAMPLED FILTER BANKS

A. Frame Conditions

The frame conditions on an oversampled filter bank will be
expressed here in terms of properties of its polyphase analysis
matrix. In the case of a -channel filter bank

and a subsampling factor [see Fig. 1(a)], the polyphase
analysis matrix is defined as

(9)

where

(10)

represents theth polyphase component of . The analysis
filters are given in terms of their polyphase components by

(11)

The necessary and sufficient frame and tight frame con-
ditions are given by the following two theorems, which are
proven in Appendices A and B, respectively.

Theorem 1: A filter bank implements a frame expansion if
and only if its polyphase analysis matrix is of full rank on
the unit circle.

Theorem 2: A filter bank implements a tight frame expan-
sion if and only if its polyphase analysis matrix is paraunitary

In this paper, we are primarily interested in FIR filter banks.
However, note that Theorems 1 and 2 are also valid for IIR
filter banks if we assume stable filters (not necessarily causal).
The proofs go along the same lines as in the FIR case.

Another formulation of the frame condition is given by the
following corollary of Theorem 1. The proof of this corollary
is straightforward and will not be given here.

Corollary 1: A filter bank with the polyphase analysis
matrix implements a frame expansion if and only if
there exists a matrix of stable rational functions,2 which
is a left inverse of

(12)

One convenience of this formulation is that it explicitly gives
a synthesis frame corresponding to the frame associated with
the analysis filter bank. Namely, the left inverse

(13)

in (12) is the so-calledsynthesis polyphase matrix.Its entries
are the polyphase components of filters of a synthesis filter
bank [Fig. 1(b)], which can be used for perfect reconstruction
of a signal from the decomposition obtained at the output of the
analysis filter bank. The synthesis filters are given in terms of
entries of as

(14)

[note the inversion of the powers ofwith respect to (11)].
If the frame condition of Theorem 1 is satisfied, the solution

for of the polyphase equation (12), and, hence, the
synthesis filter bank, is not unique in the oversampled case

. This is in accordance with the fact that for a
given analysis frame, the corresponding synthesis frame is not
unique. One solution for is the parapseudoinverse of

, which is given by

(15)

It can be easily verified that the frame corresponding to
is the frame dual to the frame associated

with the analysis filter bank. The following theorem gives a
necessary and sufficient condition for an FIR filter bank frame
to have the dual consisting of finite length filters. It is proven
in Appendix C.

Theorem 3: For a frame associated with an FIR filter bank
with the polyphase analysis matrix , its dual frame
consists of finite length vectors if and only if is
unimodular.

Note that in the oversampled case, Theorem 3 does not
preclude the existence of an FIR synthesis filter bank even if

2These functions need not be causal.
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is not unimodular. However, due to the aforemen-
tioned reasons, we put the emphasis on reconstruction using
dual frames.

In the critically sampled case , the situation is
different. The frame associated with a perfect reconstruction
critically sampled filter bank is a Riesz bases [6] in . The
corresponding synthesis frame, i.e., the left inverse of , is
unique, and it is the dual of the analysis frame. The following
result on critically sampled filter banks can be established as
a corollary of Theorem 3.

Corollary 2 [6]: Perfect reconstruction with FIR filters af-
ter an analysis by a critically sampled FIR filter bank is
possible if and only if the determinant of is a pure delay.

B. Parameterization of Frames in

The parameterization of filter bank frames given here is
based on the Smith form of polynomial matrices [13]. A
polynomial matrix of dimension ( ) can
be decomposed as the product

(16)

where and are unimodular matrices of dimensions
and , respectively, and is a diagonal
polynomial matrix

(17)

The unimodular matrices can be chosen so that the poly-
nomials are monic, and is a factor of .
Such a matrix is called theSmith formof . The
unimodular matrices and are products of finitely
many elementary matrices

The elementary matrices and correspond to
elementary row and column operations, respectively, and have
one of the following forms:

• a permutation matrix, i.e., the identity matrix with per-
muted rows;

• a diagonal matrix with elements on the diagonal equal to
unity, except for one that is equal to a nonzero constant;

• a matrix with ones on the main diagonal and a single
nonzero entry off the diagonal, which is a polynomial

.

An example of the three types of elementary matrices
is given as follows.

A complete parameterization of FIR filter bank frames
follows directly from the Smith form and is given by the next
proposition.

Proposition 1: An FIR filter bank implements a frame
expansion if and only if the polynomials on the diagonal of
the Smith form of its polyphase analysis matrix have no zeros
on the unit circle.

This proposition follows from the fact that the polyphase
matrix and its Smith form have the same rank on the unit circle
since they are related by elementary row (column) operations.
Hence, the filter bank implements a frame decomposition if
and only if its Smith form is of full rank on the unit circle
and that holds if and only if the polynomials on the diagonal
have no zeros on the unit circle.

An important class of FIR filter bank frames are those that
have duals consisting of finite length vectors. According to
Theorem 3, these are equivalent to polynomial matrices
such that is unimodular and positive definite on the
unit circle. A parameterization of these frames is given by the
following proposition.

Proposition 2: Consider an oversampled FIR filter bank
with the polyphase analysis matrix . is uni-
modular and positive definite on the unit circle if can
be written as

(18)

where the factors , , , and have the
following forms.

• is a matrix of scalars, such that .
• and are unimodular matrices, which

are products of finitely many elementary matrices.
• is an diagonal matrix of nonzero monomials.

On the other hand, any unimodular parahermitian matrix of
polynomials , which is positive definite on the unit circle,
can be factored as , where is of the
form given in (18).

This result is proven in Appendix D.
For perfect reconstruction using an FIR filter bank after

analysis with an FIR oversampled filter bank, need
not be unimodular. A necessary and sufficient condition for
the feasibility of an FIR synthesis is given by the following
proposition. It is proven in Appendix E.

Proposition 3: Perfect reconstruction with FIR filters after
analysis by an FIR filter bank is possible if and only if
the polynomials on the diagonal of the Smith form of the
polyphase analysis matrix are monomials.

As it was shown in the previous subsection, tight filter bank
frames are equivalent to paraunitary polynomial matrices. A

paraunitary matrix can always be embedded
into a paraunitary matrix [15]. The following pa-
rameterization of rectangular paraunitary polyphase matrices,
that is, tight filter bank frames, follows directly from one of
the factorizations of square paraunitary matrices studied by
Vaidyanathan [5].

Proposition 4: A polynomial matrix
is paraunitary if and only if it has the decomposition

(19)
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(a) (b)

Fig. 2. K-channel nonsubsampled filter bank. (a) Analysis filter bank. (b)
Synthesis filter bank.

The elementary building blocks have the form

(20)

where denotes a unit norm vector, and is a
matrix of scalars such that

IV. NONSUBSAMPLED FILTER BANKS

Nonsubsampled filter banks have several nice properties.
Constraints for perfect reconstruction are mild and allow
for very flexible design. The highly redundant representa-
tions they generate can be close discrete-time approximations
of continuous-time transforms. Examples of applications for
which that property is crucial are applications based on wavelet
modulus maxima representations, which are proposed by Mal-
lat et al. [18] for singularity detection, signal denoising,
and compression, and which use nonsubsampled filter banks
as the preprocessing tool. Nonsubsampled filter banks also
find their place in applications that require shift-invariant
representations, a requirement that conflicts with subsampling
in the filter bank channels [17].

A. General Results on Nonsubsampled Filter Banks

In this subsection, we discuss the frame conditions for the
case of nonsubsampled filter banks, as well as the condition
for the feasibility of an FIR synthesis after an FIR analysis.

The polyphase analysis matrix of a nonsubsampled filter
bank [see Fig. 2(a)] is a column vector whose entries are the
analysis filters themselves

(21)

Perfect and stable reconstruction is possible, provided that
there exist stable filters such that

(22)

In that case, reconstruction is performed by a synthesis filter
bank with the filters [see Fig. 2(b)]. The necessary and
sufficient condition for the existence of such filters is given by
the following corollary of Theorem 1.

Corollary 3: A nonsubsampled filter bank implements a
frame decomposition if and if only its analysis filters have
no zeros in common on the unit circle.

The frame condition does not guarantee that FIR recon-
struction is possible.

Corollary 4: Perfect reconstruction using FIR filters after
an FIR analysis by a nonsubsampled filter bank is possible if
and only if the analysis filters have no zeros in common.

This result is a corollary of Proposition 3. As a special
case of Theorem 2, we have the following result about
nonsubsampled filter banks and tight frames.

Corollary 5: A nonsubsampled filter bank implements a
tight frame expansion if and only if its analysis filters are
power complementary.

(23)

In the case of nonsubsampled filter banks, only if a frame
associated with an FIR filter bank is tight does its dual frame
consist of finite length vectors. This result is an immediate
corollary of Theorem 3.

Corollary 6: For a frame associated with an FIR nonsub-
sampled filter bank, its dual frame consists of finite length
vectors if and only if the analysis filters are power comple-
mentary, that is, if and only if the frame is tight.

B. Nonsubsampled Filter Banks and Continuous
Time Signal Analysis

A nonsubsampled filter bank, as shown in the following,
gives samples of continuous-time transforms of a signal in

, provided that an appropriate discrete-time version of
the signal is available at the input. In this subsection, we
identify the underlying continuous-time filters. An important
particular case is that of two-channel octave band iterated filter
banks that yield samples of the continuous wavelet transform.

The discretization of a continuous-time signal in
usually amounts to projecting it onto anapproximation space

, which is spanned by translates of a single function
calledthe generating function. The generating function should
satisfy a condition3

(24)

which means that its translates by integer shifts constitute a
Riesz basis for . The projection of a signal onto

can be represented by a sequence that consists of
coefficients of the expansion

(25)

The sequence is a discrete-time version of the signal and
is obtained by sampling prefiltered by an appropriate
filter

(26)

3In this paper, the Fourier transform of a signalf(x) will be written as
f̂(!).
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Fig. 3. Octave band iterated filter bank for discrete-time wavelet transform
of depth J = 4.

Integer translates of the time-reversed version of consti-
tute another basis for , which is dual to
[19]. The projection can be alternatively represented as

(27)

where

(28)

Shannon’s sampling occurs when the approximation space is
the space of bandlimited signals generated by translates of
the sinc function. Another particular case is the space
of Mallat’s multiresolution analysis, with being the
correspondingscaling function. For a detailed analysis of
various aspects of generalized sampling, refer to the work of
Unser and Aldroubi [19].

For a continuous-time signal discretized as in (26),
consider a subsequent processing by the nonsubsampled filter
bank . The subband compo-
nents generated by the filter bank
are given in the Fourier domain by

(29)

This expression indicates that the filter bank performs regular
sampling of signals obtained by filtering by a set of
filters . These filters are given in
the Fourier domain as

(30)

This characterizes the continuous-time transforms that underly
the nonsubsampled filter bank analysis in the given approxi-
mation space .

An interesting particular case is wavelet analysis imple-
mented using an iterated two-channel filter bank, such as the
one shown in Fig. 3. Suppose that the lowpass filter of
this filter bank is regular, i.e., that the infinite product

(31)

converges to , which is the Fourier transform of a
continuous-time function . If this particular

is used in the discretization given by (26), then the

(a)

(b)

Fig. 4. Sampling grids of the continuous wavelet transform implemented by
discrete-time processing. (a) Grid corresponding to the two-channel critically
sampled filter bank. (b) Grid corresponding to the two-channel nonsubsampled
filter bank.

filter bank yields samples, up to a multiplicative factor, of the
continuous wavelet transform of . The continuous wavelet
transform of for a wavelet is defined as

(32)

where . The sequence , which is
obtained in the th channel (see Fig. 3), is the sequence of
samples

(33)

where is the wavelet given by

(34)

Therefore, the octave band iterated filter bank of depth
provides the samples of the continuous wavelet transform4 at
the grid given by

(35)

Besides sampling the continuous wavelet transform on a
denser grid as compared with a critically sampled filter bank
(see Fig. 4), a nonsubsampled filter bank allows for a more
flexible design. This flexibility is demonstrated in the next
subsection.

4We assume that the wavelet (x) is real.
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TABLE I
AUTOCORRELATION FUNCTIONS OF THELOWPASSFILTERSH0(z) FOR POWER

COMPLEMENTARY NONSUBSAMPLED FILTER BANKS(H0(z); H1(z)). THE

AUTOCORRELATION FUNCTIONS ARE GIVEN FOR SEVERAL FILTER LENGTHSL

AND WITH DIFFERENTMULTIPLICITIES N1 OF THE ZERO AT z = 1 OF THE

HIGHPASS FILTERSH1(z). THE AUTOCCORELATIONFUNCTIONS ARE SYMMTRIC

SO ONLY THE FIRSTL OUT OF 2L� 1 COEFFICIENTSARE GIVEN IN THE TABLE

C. Design of Wavelets from Maximally Flat Filter Banks

The popularity of wavelet analysis comes mainly from its
ability to locate and characterize different types of singularities
(see [18] for a review). In such applications, nonsubsampled
filter banks are not only convenient for implementation in
discrete time but also give rise to a broad spectrum of wavelets
that can be derived from iterated octave band trees. Note that
for singularity detection and discrimination, it is important to
use wavelets with a given number of vanishing moments and
a certain high degree of regularity.

The procedure for wavelet design from a two-channel
filter bank , pioneered by Daubechies [2], is
basically described by (31) and (34). The regularity of the
derived wavelet is closely related to the multiplicity of zeros
of the lowpass filter at . Note that has to
have a zero at for the iterative scheme (31) to converge
and that highly regular wavelets are obtained from filters with
a maximum number of zeros at . On the other hand, the
number of vanishing moments of the wavelet is determined by
the multiplicity of zeros of the highpass filter at .
Hence, the design of highly regular wavelets from iterated filter
banks amounts to the design of maximally flat5 filters
and . In our case, the relevant issues are the flatness of

at and the flatness of at . We
study the design under the constraint that and
are power complementary, which corresponds to tight frames
in .

5The flatness of a filter at some frequency is defined as the multiplicity of
the root of the first derivative of its frequency response at that frequency.
Maximally flat filters are filters with a frequency response whose first
derivative has a maximum number of zeros on the unit circle.

(a) (b)

(c) (d)

Fig. 5. Magnitude responses of power complementary filters for generating
wavelets with two vanishing moments. The length of the filters isL = 9, and
the highpass filters have a zero of multiplicityN1 = 2 at z = 1 in all cases.
(a) Maximally flat power complementary filters; lowpass filter hasN0 = 7
zeros atz = �1. (b) Power complementary pair; lowpass filter hasN0 = 6
zeros atz = �1. (c) Power complementary pair; lowpass filter hasN0 = 5
zeros atz = �1. (d) Power complementary pair; lowpass filter hasN0 = 4
zeros atz = �1.

Consider a pair of filters and satisfying

(36)

(37)

If the multiplicity of the zeros of at is and
the multiplicity of the zeros of at is , then
the filters have flatness at and flatness
at . In designing maximally flat filters, the issue is to
maximize for a given filter length . This is dealt
with in the following proposition.

Proposition 5: For a pair of filters and of
length , satisfying (36) and (37), let be the multiplicity
of the zeros of at , and let be the multiplicity
of the zeros of at . It is possible to design

and for any pair of and such that
.

A constructive proof of the above proposition is given
in [20] as a design procedure for maximally flat power
complementary filters. The lowpass filter of the maximally
flat pair is obtained as a spectral factor of

(38)

where is given by

(39)

The highpass filter is obtained from the factorization

(40)
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TABLE II
COEFFICIENTS OFPOWER COMPLEMENTARY FILTERS WHOSE MAGNITUDE RESPONSESARE PLOTTED IN FIG. 5. THE HIGHPASS FILTER H1(z)

HAS A ZERO OF MULTIPLICITY 2 AT z = 1 IN ALL CASES. (a) MAXIMALLY FLAT FILTERS. (b) POWER COMPLEMENTARY PAIR; LOWPASS

FILTER H0(z) HAS N0 = 6 ZEROS ATz = �1. (c) POWER COMPLEMENTARY PAIR; LOWPASS FILTER H0(z) HASN0 = 5
ZEROS ATz = �1. (d) POWER COMPLEMENTARY PAIR; LOWPASS FILTER H0(z) HAS N0 = 4 ZEROS ATz = �1

Several design examples are given in Table I. Each row of this
table contains coefficients of the autocorrelation function of the
lowpass filter of the maximally flat power-complementary pair.
These filters are designed for several filter lengthsand with
different multiplicities of the zeros of the highpass filter
at . In the case , which corresponds to wavelets
with a single vanishing moment, the lowpass filter is
the binomial filter of the corresponding length. In that case,
the functions generated by iterated filter bank trees in
the manner described by (31) are B splines. It follows from
the theory of B-splines that the derived wavelets in this case

are at least times continuously differentiable.
Wavelets with two vanishing moments are obtained from
filters with . In this case, can have all but
one of its zeros at , which gives wavelets that are
at least times continuously differentiable
[20]. Note that wavelets with one or two vanishing moments
generated from orthogonal filter banks cannot have such a high
regularity. The reason is that in the orthogonal design, the
multiplicity of the zeros of the lowpass filter at has to
be equal to the multiplicity of the zeros of the highpass filter
at ; the requirements for the small number of vanishing
moments and high regularity are then contradictory. Note that
for even filter lengths and , maximally flat power
complementary design actually gives Daubechies’ filters [2].

To achieve a sufficient regularity, the lowpass filter
does not necessarily have to be maximally flat at .
This brings additional freedom, which can be used to meet
other design specifications. We illustrate this point with the
following design example.

Example 1: Fig. 5 shows the magnitude responses of sev-
eral power complementary filters for generating wavelets with
two vanishing moments. All filters are of length and
differ in the multiplicity of the zeros of the lowpass filter
at . The maximally flat pair is shown in Fig. 5(a).
The design flexibility obtained by relaxing the maximally
flat constraint can be used to attain different bandwidths, as
illustrated by the three other examples in the same figure.
Coefficients of these filters are given in Table II. Fig. 6 gives
the wavelets that are obtained from these filters.

V. CONCLUSION

Oversampled filter banks were studied in this paper using
the theory of frames. Sufficient and necessary conditions on

(a) (b)

(c) (d)

Fig. 6. Wavelets derived from the filters shown in Fig. 5. Wavelets in (a)–(d)
are derived from filters in Fig. 5(a)–(d).

filter banks to implement frame or tight frame expansions in
were established. In addition, complete parameteriza-

tions of FIR filter bank frames, tight frames, and frames for
which an FIR synthesis frame exists were given. Nonsubsam-
pled filter banks are studied as a special case. As an illustration
of the design flexibility allowed by oversampled filter banks,
we described a procedure for design of highly regular wavelets
with a given number of vanishing moments.

APPENDIX A

The proofs given in this Appendix require the introduction
of the polyphase representation of a signalas

(41)

where

(42)
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The norm of in terms of its polyphase components is given
by

(43)

The subband components ofproduced at the output of the
filter bank will be denoted by

. They are given in the -transform
domain by

(44)

where denotes the polyphase analysis matrix of the filter
bank.

Proof of Theorem 1:
a) Necessary Condition:
Suppose for some vector and some

frequency . Consider the sequence of signals such
that the polyphase representation ofhas the form

where

otherwise

Let be the subband signals produced by

. Then, for all , , but as
. Therefore, there is no such that

for all .
b) Sufficient Condition:
Consider

Since we are considering FIR filter banks (or stable IIR filters,
i.e., no poles on the unit circle)

holds, where . Therefore

Suppose further that is of full rank everywhere on the
unit circle. Then, is also of full rank on the unit

circle, and hence, is a matrix
of rational functions of that are bounded (no poles) on the
unit circle. We have that

Since

using the same argument as in the above, it can be shown that

This proves that

APPENDIX B

Proof of Theorem 2:
a) Sufficient Condition:This is obvious.
b) Necessary Condition:Let

. First, note that all elements on the diagonal
of have to be equal to a constant. To verify this,
consider a signal that has only one nonzero polyphase
component. Then

for some , and

Then, for the tight frame condition to hold, it is necessary that
.

Now, suppose that for some , does
not hold. Consider such that only and are
nonzero. Then

From this, it follows that

Re

and therefore

APPENDIX C

Readers not familiar with the Smith form of polynomial
matrices are advised to read the beginning of Section III-B in
order to follow this proof.
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Proof of Theorem 3:The sufficiency of the condition is
obvious. Here, we prove that it is also a necessary condition.
Given the filter bank polyphase analysis matrix , let

be its Smith form decomposition.
and are products of corresponding elementary

matrices, and

(45)

where is a diagonal matrix of monic polynomials.
Suppose that the frame dual to the frame associated with this
filter bank consists of finite length vectors, i.e., that

is a polynomial matrix. Substituting the
Smith decomposition in the equation for the pseudoinverse

, we obtain

(46)

This expression further gives

(47)
where denotes the upper-left corner submatrix
of . It follows that

(48)

The matrix is unimodular, and therefore, its inverse is
a polynomial matrix. Consequently, the left-hand side of (48)
is also a polynomial matrix. Therefore is
a polynomial matrix. This implies that det

for some constant and an integer . However, this
is possible only if polynomials on the diagonal of are
monomials.

Taking this fact into account, the expression
can be transformed into

(49)

From this, we obtain that

(50)

Since both and are unimodular, and is
a diagonal matrix of monomials, , , and

are polynomial matrices. Hence,
must be a polynomial matrix as well, which proves that
det has to be a monomial. However, this
is only possible if const since . This
proves that has to be unimodular.

APPENDIX D

Proof of Proposition 2: It is obvious that for any of
the form given in (18), has to be unimodular and
positive definite on the unit circle.

Suppose that is an unimodular parahermitian
polynomial matrix, positive definite on the unit circle. Any

parahermitian matrix of polynomials can be
factored as

(51)

where is an matrix of polynomials [14]. Let
be the Smith form decomposition of

. Since is unimodular and positive definite on the
unit circle, the polynomials on the diagonal of have to
be nonzero monomials. This proves the proposition.

APPENDIX E

Proof of Proposition 3: Let the Smith decompositions of
the polyphase analysis matrix and a corresponding FIR
polyphase synthesis matrix be

(52)

and

(53)

respectively. Here, and are diagonal polynomial
matrices. From the condition that and that

, it follows that

(54)

where denotes the submatrix in the upper-left
corner of . Since is a polynomial matrix
and both and are diagonal polynomial matrices,
(54) can be satisfied only if the polynomials on the diagonal
of are monomials.

Conversely, perfect reconstruction can be achieved using
the filter bank with the synthesis polyphase matrix

. If in the Smith decomposition
of the analysis polyphase matrix is a diagonal matrix
of monomials, such a synthesis filter bank is obviously FIR.
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[6] M. Vetterli and J. Kovǎcevíc, Wavelets and Subband Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, 1995.

[7] R. Balian, Un principe d’incertitude fort en th´eorie du signal on
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