59,614 research outputs found

    Integration of Biological Sources: Exploring the Case of Protein Homology

    Get PDF
    Data integration is a key issue in the domain of bioin- formatics, which deals with huge amounts of heteroge- neous biological data that grows and changes rapidly. This paper serves as an introduction in the field of bioinformatics and the biological concepts it deals with, and an exploration of the integration problems a bioinformatics scientist faces. We examine ProGMap, an integrated protein homology system used by bioin- formatics scientists at Wageningen University, and several use cases related to protein homology. A key issue we identify is the huge manual effort required to unify source databases into a single resource. Un- certain databases are able to contain several possi- ble worlds, and it has been proposed that they can be used to significantly reduce initial integration efforts. We propose several directions for future work where uncertain databases can be applied to bioinformatics, with the goal of furthering the cause of bioinformatics integration

    EFICAzĀ²: enzyme function inference by a combined approach enhanced by machine learning

    Get PDF
    Ā©2009 Arakaki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2105/10/107doi:10.1186/1471-2105-10-107Background: We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment. Results: We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAzĀ², exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAzĀ² and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAzĀ² generates considerably more unique assignments than KEGG. Conclusion: Performance benchmarks and the comparison with KEGG demonstrate that EFICAzĀ² is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAzĀ² web service is available at: http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.htm

    Use-cases on evolution

    Get PDF
    This report presents a set of use cases for evolution and reactivity for data in the Web and Semantic Web. This set is organized around three different case study scenarios, each of them is related to one of the three different areas of application within Rewerse. Namely, the scenarios are: ā€œThe Rewerse Information System and Portalā€, closely related to the work of A3 ā€“ Personalised Information Systems; ā€œOrganizing Travelsā€, that may be related to the work of A1 ā€“ Events, Time, and Locations; ā€œUpdates and evolution in bioinformatics data sourcesā€ related to the work of A2 ā€“ Towards a Bioinformatics Web

    Towards a Taxonomically Intelligent Phylogenetic Database

    Get PDF
    This note outlines some of the key intellectual obstacles that stand in the way of creating a usable phylogenetic database. These challenges include the need to accommodate multiple taxonomic names and classifications, and the need for tools to query trees in biologically meaningful ways. Until these problems are addressed, and a taxonomically intelligent phylogenetic database created, much of our phylogenetic knowledge will languish in the pages of journals

    Annotation Enrichment Analysis: An Alternative Method for Evaluating the Functional Properties of Gene Sets

    Get PDF
    Gene annotation databases (compendiums maintained by the scientific community that describe the biological functions performed by individual genes) are commonly used to evaluate the functional properties of experimentally derived gene sets. Overlap statistics, such as Fisher's Exact Test (FET), are often employed to assess these associations, but don't account for non-uniformity in the number of genes annotated to individual functions or the number of functions associated with individual genes. We find FET is strongly biased toward over-estimating overlap significance if a gene set has an unusually high number of annotations. To correct for these biases, we develop Annotation Enrichment Analysis (AEA), which properly accounts for the non-uniformity of annotations. We show that AEA is able to identify biologically meaningful functional enrichments that are obscured by numerous false-positive enrichment scores in FET, and we therefore suggest it be used to more accurately assess the biological properties of gene sets
    • ā€¦
    corecore